
Serverless Query Optimizer (SQO)

Jeremy Bogle and Tim Kralj
w December 11th, 2018

Abstract

All modern data management systems (DBMS) have

a set of parts that allow it to read, write, and store

data as well as perform operations on its data. Since

microservices and microservice architectures have be-

come increasingly popular in application development,

we were wondering if it would be possible to apply this

same idea to a database system to make it more modular

and allow for independent development and processing.

Since the query optimizer is a specific module that often

gets overlooked, we decided this module would be the

best to iterate on and improve. The query optimizer takes

queries that are already parsed by the query parser, and

attempts to find the most efficient logical plan to perform

this query. To do this, the query optimizer first tries to

search the space of all possible logical plans and esti-

mate the cost of each plan and pick the one that should

run the fastest. Often, more exhaustive query searches

lead to slower query speeds, but companies need to be

competitive on query execution speed and therefore they

are not investing money into researching better ones.

There has been a lot of work in attempting to prune

the search space for query plans so that the optimizer

has to consider a smaller number of logical plans and

thus can find the best logical plan faster[1]. We think

that, because this specific part of the database is very

modular, it could be implemented in a lambda function

in AWS so that these functions could be performed

separately from the actual DBMS. Then, this query

optimizer could be iterated on its own as its own module

of the larger DBMS. In addition, we believe it is possible

to have multiple lambda functions searching different

parts of the logical plan space at the same time so that

the space can be searched in parallel allowing for less

aggressive search space pruning or simply faster logical

plan generation. In order to have this happen, lambdas

should be treated as if they were actual threads and

not separate lambdas. Similar thread-safety issues found

on concurrent programs apply to concurrent lambdas;

however, one main issue is that lambdas do not have a

shared data source to get information from.

I. INTRODUCTION

Cloud databases are becoming a more widely offered

service among cloud computing companies. With the

world revolving around data collection, being able to

store data from anytime - anywhere - all the time -

has become a commonplace among any tech company.

Both Tim Kralj and I were interested in experimenting

with cloud database systems. We were wondering if it

would be possible to make a fully distributed database

that lives on microservices in the cloud. With this idea

being broad, we tried to implement specific parts of the

database in AWS lambda functions. Doing this was be

an interesting experiment to be able to take different

parts of a database and put them together to create a

working DBMS. To start narrow, we decided to try to

implement just the query optimizer in AWS lambda and

compare it to locally running query optimizer.

The query optimizer is an often overlooked part of the

DBMS. Until recently, projects involving parallel query

plan search, or modular query optimizers, have scarcely

been attempted. We imagine a query optimizer that

would sit on top of the rest of a DBMS and take queries

parsed by the query parser and the find the correct

logical plan and return that plan back to the DBMS to

takeover the actual query computations. A first attempt



at this has come out of Greenplum DB (GPDB) [2] with

its project called Orca [3]. Orca is now implemented

in GPDB as well as Apache HAWK [4]. With our

project SQO, we have learned from Orca, as well as

our our simpleDB query optimizer and attempted to turn

GPORCA into a serverless function. With a serverless

query optimizer living in the cloud, any DBMS could

use this state of the art query optimizer to find the

proper logical plans before beginning its computations.

This also would allow for jobs to be running on the

DBMS while query planning is running on lambda

functions separately. In addition, the query optimizer

could even be shared by multiple DBMs systems. This

opens the door for more parallelism as the same way a

single thread could search the entire plan space, many

query optimizer nodes could compute the best plan

for different parts of the plan space and recursively

aggregate to find the single optimal plan.

II. PROJECT DETAILS

A. Amazon Web Services (AWS)

1) Lambda: AWS Lambda is a serverless function

that runs in the cloud. The architecture contains code

that only runs when it is triggered by a specific event.

This type of architecture has no underlying servers the

user sees. In addition, the user is only billed for actual

compute time, not constantly (like a cloud server). AWS

lambda has many different runtimes that can be used

including Java, python, and most recently C++. This will

be used to do computing for the project.

2) API Gateway: AWS API Gateway is a tool to cre-

ate APIs. They are integrated with the Lambda service

very well and make it much easier to integrate and test

different AWS services together. This will be used to

trigger the lambda functions and return a result to the

caller.

3) Elastic Cloud Compute (EC2): AWS EC2 is the

service for virtual machines in the cloud. It is used for

our testing to compare the results of the lambda output

vs regular servers.

B. SimpleDB

Before beginning to tackle a large scale project like

GPORCA, we wanted to work with something that we

knew. For this, we started with our current implemen-

tation of simpleDB. This is a small database we built

ourselves. In essence, this is a mini db that is able to

run queries and joins but does not have much logic in

the form of the query optimizer. It does use histograms

but does not do the best job in estimating the selectivity

of a filter. We started off with this as our base to try to

improve the basic implementation before starting with

something new and harder.

Initially, we wanted to improve simpleDB and test

the viability of our idea by running it on a serverless

function. Starting off, we had to start with fixing sim-

pleDB query optimizer. To do this, we changed the given

enumerateSubsets method and improved upon the ex-

isting join cardinality estimations. To change enumerate

subsets we recursively computed a bitmap of all possible

joins and returned iterator over those joins instead of

computing all possible joins in multiple nested loops.

Then, we used our updated cardinality estimator that

used a seqscan to calculate selectivities on different

ranges and a cost estimator to estimate the cost of all

found plans and return the best plan. With this, we then

moved onto deploying this query optimizer on lambda.

The lambda function we created takes in a query

Fig. 1. A diagram showing how a query along with its table statistics,
in DXL format, can be passed to API gateway, processed by lambda,
and a plan is returned.



from the database, searches for the plan that it believes

to be best, and then returns that logical plan. We fronted

this serverless function with an API so that any machine

is able to query our simpleDB query optimizer. This

implementation of the query optimizer did have some

downsides, however. For example, all the data from

the query from has to already be stored on the AWS

lambda function. This is something that we found was

not compatible with our simpleDB implementation to

fix, since we could not pass data files into our lambda

through an API request without the underlying data

structures. In addition, there was a lot of unnecessary

dependencies within our simpleDB implementation that

were needed in order to have the serverless function

working but should not be needed for a standalone

query optimizer.

https://3xs0c504hi.execute-api.us-east-1.amazonaws.com/test/test

We quickly realized to get this kind of function to run

without giving the API request data tables, the lambda

would have to communicate with the DBMS in order

to receive table statistics to compare logical plans. We

saw how GPORCA creates a data exchange language,

or DXL, that the DBMS could use to communicate with

GPORCA (Figure 2). However, in order to just run a

proof of concept, we hosted the entire data tables on

the lambda, allowing it to compute statistics locally. We

were able to host this optimizer with an API and pass

it queries and successfully return a query plan to be

used by the locally running DBMS. We saw minimal

Fig. 2. An illustration of communication between a DBMS and query
optimizer using DXL. It is important to note how it requires an initial
query and then a request for data from the catalog DXL (MD) before
it can return the optimal plan

latency and an effective way to offload some processing

from the local DB and decided to move forward with

the exploration by tackling GPORCA.

C. GPORCA

Because GPORCA was published and open sourced

in 2016, we had the privilege of being some of the first

users of the project. This came with a lot of debug-

ging headaches, especially when deploying to lambda.

However, before moving to lambda we were able to run

GPORCA with standard query benchmarks and analyze

its performance.

GPORCA is an multi-threaded parallel query opti-

mizer written in C++. It was created to be one of

the first optimizers that makes use of modern multi-

core architectures with multiple threads. To do this, the

system has a scheduler that adds tasks onto a stack that

are then taken off and used. The tasks are added to

a dependency graph that determines what parts of the

query optimization can be done in parallel and which

cannot. There are 7 main steps that are done with orca

are: Exp(g), exp(gexpr), Imp(g), Imp(gexpr), Opt(g, reg),

Opt(gexpr, req), Xform(gexpr, t) as seen in Figure 3. The

scheduler uses the dependency graph to determine which

can be done in parallel and batch them out accordingly

on various threads. Each of the queries is analyzed using

these steps and then it finds the optimal query plan.

Another component of GPORCA is how the system

interacts with the database itself. Being a modular query

optimizer, GPORCA does not contain the data so it must

rely on asking the catalog for the statistics. All of the is

done using a format called DXL. This is used to receive

the query, ask for data statistics and then to return the

final result from the query optimizer (to the system

itself). This is an important concept for our own system

since we were able to leverage the DXL solution with

our own implementation of a query optimizer (Figure 1).

In addition, this means that the host DBMS of GPORCA

must implement DXL capabilities within the catalog.

III. CHALLENGES

The biggest challenge we saw when trying to modu-

larize the query optimizer is computing table statistics.



Fig. 3. An illustration of the dependency graph that Orca builds
during execution. This is used to determine parallelism within the
query optimizer in order to not result in races

With simpleDB, we used small enough tables that we

could allow the lambda to compute the table statistics

locally so that it could estimate query execution times.

To solve this problem, we saw how GPORCA created a

DXL language. However, with GPORCA, it required a

host DB to also have implemented DXL and be readily

available to communicate with the query optimizer. Our

spin on this provided the query optimizer with the proper

DXL files, or table statistics, up front so that the query

optimizer could do the full computation on its own and

return the optimal plan, in DXL format. We leveraged

GPORCA’s DXL in this way so that we could make each

query optimization a single-hop process so it could run

independently.

Given that GPORCA was so new, it was very difficult

to debug this setup. It also has a lot of external depen-

dencies that work differently on different machines. In

order to get it to work, it requires specific versions of

various build tools including Xerces, Ninja, and Cmake.

All of these tools caused hurdles when moving from

local machine into a linux based lambda. In addition, the

codebase is written in C++ and AWS lambda released

support for C++ at AWS re:invent on November 29th,

2018 [5]. While building our C++ deployment pack-

age, we had many problems with external libraries and

additional test files, to allow for full functionality on

the lambda. However, we eventually had our version of

GPORCA up and running on lambda with functionality

Fig. 4. This graph illustrates the percentage of the query plan space
search by branch and bound

for unit tests and query optimization given proper DXL

files.

IV. PRUNING THE SEARCH SPACE

One specific function of a query optimizer that we

wanted to digest was the search space pruning. Every

query optimizer has to generate a space of possible

logical plans that it want to consider for the query. Then

it has to search through that space and evaluate each

plan and pick the best plan from those that it evaluates.

A widely used method for this is a branch and bound

search with a heuristic [6]. GPORCA can do both branch

and bound and exhaustive search. One thing it does with

its branch and bound is that it tries to put plans that it

thinks will be slower later in the search so that when

it gets to those it can rule them out more quickly as

soon as the estimated runtime exceeds the previously

seen fastest runtime.

We compared the percentage of query plan space

searched, and time it took, by both branch and bound and

exhaustive search by our lambda function. The results

are shown in Table I. We can see in this table the in

some cases branch and bound aggressively prunes the

search space. Other studies, including a paper called

”Exploiting Upper and Lower Bounds” from 2001 have

shown that proper, cautious pruning can be done rela-

tively safely, but many widely used heuristic techniques

can return a non-optimal plan [1]. With certain queries

like TPCH-Q5, we see very aggressive pruning with only

.06% of the entire space searched. This pruning success-

fully decreases runtime. However, the benefit of running



TABLE I

COMPARING BRANCH AND BOUND TO EXHAUSTIVE SEARCH ON THE LAMBDA FUNCTIONS

Exhaustive Search Branch and Bound Plans B&B/Exhaustive
Query Number of plans Time (ms) Number of plans Time (ms) Percentage

TPCH-Q5 4997013580 5853 3092440 820 0.000618858

TPCDS-39-InnerJoin-JoinEstimate 18 34 1 30 0.055555556

TPCH-Partitioned-256GB 409239 1963 38580 1064 0.09427254

HAWQ-TPCH-Stat-Derivation 3879264 256 2584454 261 0.666222768

TPCDS-NonPart-Q70a 1.16541E+12 709 8.16541E+11 699 0.700647696

the query optimizer in lambda is that we can offload

this processing off of the DBMS, and with this change,

have more processing power for efficiently searching

this space. In addition, with the multi-threading done

by GPORCA’s scheduler, it can maximize parallelism

by running on a large core machine or on slave lambda

functions - explained more in section VI.

The parallelism that is presented by lambdas could

increase the search space from branch and bound to a

different type of search that prunes less aggressively.

This would allow the percent of searches done by our

search algorithm to increase, and ultimately improve our

final logical plan outputs.

V. COMPARISON OF RUNTIMES

To further evaluate our proof of concept, we wanted to

test runtimes to verify that a serverless architecture could

provide fast enough speeds to compete with a typical

query optimizer. We saw that lambda stacked up well

against all machines we tested. The only machine that

outperformed the lambda was a 32-core EC2 from AWS.

However, these machines can cost up to 3.5$/hour as

long while they are up and running so would not feasible

or nearly as cost effective for smaller scale projects.

Lambda functions provide a lot of benefit in terms of

cost and rival top single node machines in computational

power. We can see Figure 6 that lambda can be much

cheaper in many use cases. In addition, this graph does

not include the fact that the EC2 might not be able to

handle that many queries per second, whereas lambdas

can scale more as they are not running on a single

machine but always run in parallel, in a new lambda,

Fig. 5. A comparison of runtimes for sets of queries on various
machines. These were all running the same lambda query unit tests.
The time for lambda does not include latency (0.2s) per query

when triggered. This idea of concurrent lambdas is

explained more in section VI.

VI. APPLICATIONS

A. Concurrent Lambdas

Lambdas are a service that is always available and

can scale to whatever amount of requests per second

that is required by a system [7]. This is one benefit that

a serverless query optimizer has over a regular one. If

a system had to handle 1,000,000 requests a second,

a server may not be able to handle the requests but

1,000,000 lambda functions a second could be created

and maintained at scale for as long as the system needed

it to. While there is a breakpoint of price vs requests

where lambdas become more expensive; however, there

is another cap point that is where a server system cannot

physically handle all the requests coming in at once. This

is a spot where having a serverless database or a hybrid

database with the query optimizer located in a serverless

function could be beneficial. These lambdas could help



dynamically scale depending on the requests per minute

that were being made, and handle large variations in

demand with ease. It is important to note that the rest

of the database system also has to be able to keep up

with such scaling.

B. Multiple Lambdas

A future concept for a lambda based query optimizer

is treating lambdas as if they were their own threads. In

this case, we could have a master lambda that receives

an API call to do some computing. This master node

begins the execution and uses its scheduler to spawn

off new lambdas instead of threads when it deems

necessary (valuing the trade offs of cost and computation

speed/power). The dependency graph in Figure 3 shows

what parts of a query optimzation call can be optimized

with threads. Since the children of a branch do not rely

on one another, in theory, one could spin off a new

lambda at each point of the graph. This could be used to

speed up the same search that would have been done by

a server with a limited number of possible cores/threads

to use.

Fig. 6. This figure shows how lambda can be much more cost effective
than running large cloud instances. We assume each optimization takes
about 5 seconds, which is long for most queries we tested, and also
assume that the lambda is running at max compute speed. Equation (1)
represents the .02$/100000 requests summed with compute cost for
a 3GB lambda for 5 seconds * hits/second. The large EC2 cost in
equation (2) costs 3.46$/hr. We see that as long as your are running
less than 350,000 queries per day, lambda is more cost effective
(1) Ce = (.02 + 0.00024485 ∗ 100000) ∗ (q/s)

(2) Cl = 3.46 ∗ 24

Fig. 7. A potential architecture involving lambdas, spawning other
lambdas to parallelize its search. We use S3 to store the table statistics
so all other lambdas have access.

C. Lambda Drawbacks

One of the main issues with working with lambdas

is they have no persistent state, which makes it difficult

to communicate between different lambdas and a data

store. On a server, there is a hard drive attached which

can be accessed by all threads on that machine; however,

a lambda can be thought of as one of those threads

without the information behind it. To achieve concurrent

lambdas, there needs to be some sort of data stored

about the database. There are two logical solutions to

this issue. First, when an API call is made to the lambda

to process a query, data information can be passed along

with it. The information can be moved to AWS S3 (Sim-

ple Storage Service) that will hold the information while

the concurrent lambdas execute. This way, each of those

separate lambda functions can access the information

that is needed as shown in Figure 7. Another solution to

this problem is to have a lambda make a different API

request back to the operating database for the data. This

would be similar to the original architecture of ORCA,

however, instead of querying the data within the cluster

of servers, it would have to send another HTTP request.

This would add latency with every subsequent request

to the system. Because of this, the second option does

not seem viable unless there is a depth limit placed on

the number of lambdas that are allowed to be spawned.

With this, the rest of the work can be done using the

threads on the lambdas itself.

VII. CONCLUSION

Overall, with in this project we have built a modular,

serverless query optimizer (SQO), that can be used



anytime from any DBMS. We have evaluated its per-

formance and explored the space of cloud computing.

We know that offloading this computation can not only

increase the speed of the DBMS, but also increase the

speed of the query optimizer as well, all at a lower

cost compared to other cloud solutions. The benefits of

lambda are just starting to be uncovered as its incredible

scalability can be leveraged in many areas of computer

science. With SQO we believe that processing queries

immediately every time this lambda is triggered rather

than waiting for the DBMS to schedule the query is a

feature that could be used to improve many database

systems today. In a world where data collection is

everywhere and cloud computing is still being explored,

a lightweight query optimizer like SQO could be a future

component for database systems.

REFERENCES

[1] Exploiting Upper and Lower Bounds
in Top-Down Query Optimization .
https://15721.courses.cs.cmu.edu/spring2018/papers/15-
optimizer1/shapiro-ideas2001.pdf.

[2] Greenplum Database: GPDB. https://github.com/greenplum-
db/gpdb.

[3] Orca: A Modular Query Optimizer Architecture for Big
Data. https://15721.courses.cs.cmu.edu/spring2016/papers/p337-
soliman.pdf.

[4] Apache HAWK: Hadoop Native SQL. Advanced, MPP, elas-
tic query engine and analytic database for enterprises.
http://hawq.apache.org/.

[5] Introducing the C++ Lambda Runtime.
https://aws.amazon.com/blogs/compute/introducing-the-c-lambda-
runtime/.

[6] Multiple Query Optimization with Depth-First
Branch-and-Bound and dynamic query ordering.
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article-
1184&context=sis research.

[7] AWS Lambda FAQs . https://aws.amazon.com/lambda/faqs/.


