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Abstract

To keep up with the continuous growth in demand, cloud providers spend millions of
dollars augmenting the capacity of their wide-area backbones and devote significant
effort to efficiently utilizing WAN capacity. A key challenge is striking a good balance
between network utilization and availability, as these are inherently at odds; a highly
utilized network might not be able to withstand unexpected traffic shifts resulting
from link/node failures.

I motivate this problem using real data from a large service provider and propose
a solution called TeaVaR (Traffic Engineering Applying Value at Risk), which draws
on financial risk theory to realize a risk management approach to traffic engineering
(TE). I leverage empirical data to generate a probabilistic model of network failures,
and formulate a Linear Program (LP) that maximizes bandwidth allocation to net-
work users subject to a service level agreement (SLA). I prove TeaVaR’s correctness,
and then compare it to state-of-the-art TE solutions with extensive simulations across
many network topologies, failure scenarios, and real-world traffic patterns. The re-
sults show that with TeaVaR, operators can support up to twice as much throughput
as other TE schemes, at the same level of availability.

I also construct a simulation tool that builds on my implementation of TeaVaR
and simulates its usage in the data plane. This tool can be useful not only for testing
TE schemes but also for capacity planning, as it allows network operators to see how
their network is performing, where the bottlenecks are, and what kind of demand
loads it can handle.
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Chapter 1

Introduction and motivation

Traffic engineering (TE), the dynamic adjustment of traffic splitting across network

paths, is fundamental to networking and has received extensive attention in a broad

variety of contexts [21, 23, 13, 7, 3, 2, 17, 19, 24, 39, 30, 27]. Given the high cost of

wide-area backbone networks (WANs), large service providers (e.g., Amazon, Face-

book, Google, Microsoft) are investing heavily in optimizing their WAN TE, leverag-

ing Software-Defined Networking (SDN) to globally optimize routing and bandwidth

allocation to users [17, 19, 30, 26, 29]. In addition, they have to purchase or lease

fiber to support wide-area connectivity between distant data center locations, and

they need to know how and when to purchase this fiber. The process of deciding

which fibers to buy and how to manage them is called capacity planning.

A crucial challenge faced by WAN operators is striking a good balance between

network utilization and availability in the presence of node/link failures [15, 33, 30,

5, 18]. These two objectives are inherently at odds; providing high availability re-

quires keeping network utilization sufficiently low to absorb shifts in traffic when

failures occur. To attain high availability, today’s backbone networks are typically

operated at fairly low utilization so as to meet user traffic demands while providing

high availability (e.g., 99%+ [18]) in the presence of failures.

In this chapter, I review some previous work in the field of WAN failure analysis

and explain the motivations driving this work. Chapter 2 explains a similar problem

in financial risk modeling and portfolio optimization. Chapter 3 offers a solution to
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Figure 1-1: 𝐿𝑖𝑛𝑘2’s utilization is kept low to sustain the traffic shift when failures
happen.

this problem where the loss in the network is cast as a linear program and minimized

as a TE optimization. Chapter 4 describes the evaluation setup and performance of

the solution proposed in Chapter 3. Chapter 5 covers the simulation and visualization

of results. In this chapter I also explain how this same TE approach can be used with

the simulation for capacity planning in an SDN.

1.1 Effects of failures in the WAN

Figure 1-1 plots the link utilization of two IP links in a backbone network in North

America with the same source location but different destinations. The utilization of

each link is normalized by the maximum achieved link utilization; hence, the actual

link utilization is lower than plotted. On August 4𝑡ℎ, 𝐿𝑖𝑛𝑘1 failed, and its utilization

dropped to zero. This, in turn, increased the utilization of 𝐿𝑖𝑛𝑘2. Importantly,

however, under normal conditions, the normalized utilization of 𝐿𝑖𝑛𝑘2 is only around

20%, making 𝐿𝑖𝑛𝑘2 underutilized almost all the time.

This example illustrates a common problem with today’s WANs. In Chapter 4,

I show how state-of-the-art TE schemes fail to maximize the traffic load that can

be supported by the WAN for the desired level of availability. Under these schemes,

the allocated bandwidth falls significantly below the available capacity, resulting in

14



needlessly low network utilization. A key insight of my research is that operators

should explicitly optimize network utilization subject to target availability thresholds.

Instead of explicitly considering availability, today’s TE schemes use the number of

concurrent link/node failures the TE configuration can withstand (e.g., by sending

traffic on link-disjoint network paths) as a proxy for availability. However, the failure

probability of a single link can greatly differ across links, sometimes by three orders

of magnitude [14]. Consequently, some failure scenarios involving two links might

be more probable than others involving a single link. Alternatively, some failure

scenarios might have only negligible probability; thus, lowering network utilization to

accommodate them is wasteful and has no meaningful bearing on availability.

Fortunately, operators have high visibility into failure patterns and dynamics.

For example, it has been shown that link failures are more probable during working

hours [15] and can be predicted by sudden drops in optical signal quality, “with a 50%

chance of an outage within an hour of a drop event and a 70% chance of an outage

within one day” [14]. I propose that this wealth of timely empirical data on node/link

failures in the WAN should be exploited to probe the probability of different failure

scenarios when optimizing TE.

1.2 Motivation for this work

In this section, I provide a more concrete example of my work motivation. As men-

tioned above, the number of concurrent node/link failures a TE configuration can

withstand is used as a proxy for availability. This can be manifested, e.g., in sending

user traffic on multiple network paths (tunnels) that do not share any, or share only

a few, links or in splitting traffic across paths in a manner that is resilient to a certain

number of concurrent link failures [30]. In what follows, I explain why reasoning

about availability in terms of the number of concurrent failures that can be tolerated

is often not enough, using a demonstration of the recently proposed Forward Fault

Correction (FFC) TE scheme [30] to substantiate my explanation.

FFC example. FFC maximizes bandwidth allocation to be robust against up to 𝑘

15
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Figure 1-2: (a) A network of three links each with 10Gbps bandwidth; (b)
Under conventional TE schemes, such as FFC [30], the total admissible traffic
is always 10Gbps, split equally between available paths.

concurrent link failures, for a configurable value 𝑘. To accomplish this, FFC opti-

mization formulation sets a cap on the maximum bandwidth 𝑏𝑖 each network flow 𝑖

(identified by source/destination pair) can utilize and generates routing (and rerout-

ing) rules such that the network can simultaneously support bandwidth 𝑏𝑖 for each

flow i in any failure scenario involving at most k failures.

Figure 1-2 shows an example of FFC, where the source node 𝑠 is connected to the

destination node 𝑑 via three links, each with a capacity of 10Gbps. Suppose that the

objective is to support the maximum total amount of traffic from 𝑠 to 𝑑 in a manner

that is resilient to, at most, two concurrent link failures. Figure 1-2(b) presents

the optimal solution under FFC: rate-limiting the (𝑠, 𝑑)-flow to send at 10Gbps and

always splitting its traffic equally between all links that are intact; e.g., when no link

failures occur, traffic is sent at 10
3
Gbps on each link, when a single link failure occurs,

each of the two surviving links carries 5Gbps, and with two link failures, all traffic

is sent on the single surviving link. Thus, this solution guarantees the flow reserved

bandwidth of 10Gbps without exceeding link capacities under any failure scenario

that involves at most two failed links. Observe, however, that this comes at the cost

of keeping each link underutilized (one third utilization) when no failures occur.

Striking the right balance. The question is whether high availability can be

achieved without such drastic over-provisioning. Approaches such as FFC are com-

pelling in that they provide strong availability guarantees; in Figure 1-2(b), the (𝑠, 𝑑)

flow is guaranteed a total bandwidth of 10Gbps even if two links become permanently

unavailable. Suppose, however, that the availability, i.e., the fraction of time a link is

up, is consistently 99.9% for each of the three links. In this scenario, the network can

16
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Figure 1-3: (a) The same network as in Fig. 1-2(a), with added informa-
tion about link failure probabilities; (b) A possible flow allocations under
TeaVaR with total admissible traffic of 20Gbps 99.8% of time.

easily support 30Gbps throughput (3× improvement over FFC) around 99.9% of the

time simply by utilizing the full bandwidth of each link and never rerouting traffic.

This example captures the limitation of failure-probability-oblivious approaches to

TE, such as FFC, namely that they ignore the underlying link availability (and the

derived probability of failure). As discussed elsewhere [15, 14], link availability greatly

varies across different links. Consequently, probability-oblivious TE solutions might

lead to low network efficiency under prevailing conditions to accommodate potentially

highly unlikely failure scenarios (i.e., with little bearing on availability). However, not

only might a probability-oblivious approach overemphasize unlikely failure scenarios,

it might even disregard likely failure scenarios. Consider a scenario where three links

in a large network have low availability (say, 99% each), and all other links have

extremely high availability (say, 99.999%). When the operator’s objective is to with-

stand two concurrent link failures, the scenario where the three less available links

might be simultaneously unavailable will not be considered, but much less likely sce-

narios in which two of the highly available links fail simultaneously will be considered.

To explain the motivation for a risk-management approach, let us revisit the ex-

ample in Figure 1-2. Now, suppose the probability of a link being up is as described in

the figure, and the link failure probabilities are uncorrelated (I will discuss correlated

failures in Chapter 3). In this case, the probability of different failure scenarios can

be expressed in terms of individual links’ failure probabilities (e.g., the probability

of all three links failing simultaneously is 10−7). Under these failure probabilities,

the network can support 30Gbps traffic almost 90% of the time simply by utiliz-

ing the full bandwidth of each link and not rerouting traffic in the event of failures.

17



FFC’s solution, shown in Figure 1-2(b), can be regarded as corresponding to the

objective of maximizing the throughput for a level of availability in the order of 7

nines (99.99999%), as the scenario of all links failing concurrently occurs with prob-

ability 10−7. Observe that the bandwidth assignment in Figure 1-3(b) guarantees a

total throughput of 20Gps at a level of availability of nearly 3 nines (99.8%).1 Thus,

the network administrator can trade network utilization for availability to reflect the

operational objectives and strike a balance between the two.

1.3 My work: TeaVaR (Traffic engineering applying

value at risk)

Instead of reasoning about availability indirectly in terms of the maximum number of

tolerable failures [30], network operators could generate a probabilistic failure model

from empirical data (e.g., encompassing uncorrelated/correlated link failures, node

failures, signal decay, etc.) and optimize TE with respect to an availability bound.

My collaborators and I implemented a TE optimization framework called TeaVaR.

This framework allows operators to harness the information required to fine-tune the

tradeoff between network utilization and availability, thus striking a balance that best

suits their goals. TeaVaR is the first formal TE framework that enables operators

to jointly optimize network utilization and availability. In the next chapter, I discuss

the idea for this framework; I explain how it relates to portfolio optimization and

financial risk modeling and show how this mindset can be applied to TE. In Chapter

3, I explain the Linear Program of TeaVaR in more detail.

Note that this approach to risk-aware TE is orthogonal and complementary to

the challenge of capacity planning. While capacity planning focuses on determining

in what manner WAN capacity should be augmented to provide high availability,

my goal is to optimize the utilization of available network capacity with respect to

real-time information about traffic demands and expected failures. I explain how this

approach can be applied to capacity planning in Chapter 5.
1The probability of the upper and lower links both being up, regardless of the middle link, is (1−10−3)2 = 0.998.
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Chapter 2

Probabilistic approach to risk

management

In this chapter, I relate the central concept of Value at Risk (VaR) in finance to

resource allocation in networks and, more specifically, to TE. I then highlight the

main challenges of and ideas underlying TeaVaR—a CVaR-based TE solution. A

full description of TeaVaR appears in Chapter 3.

2.1 Probabilistic risk management in finance

In many financial contexts, the goal of an investor is to manage a collection of assets

(e.g., stocks), also called a portfolio, so as to maximize the expected return on the

investment while considering the probability of possible market changes that could

result in losses or smaller-than-expected gains.

Consider a setting in which an investor must decide how many of each type of

stock to acquire by quantifying the return from the different investment possibilities.

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be a vector representing an investment, where 𝑥𝑖 represents the

amount of stock 𝑖 acquired, and let 𝑦 = (𝑦1, . . . , 𝑦𝑛) be a vector randomly generated

from a probability distribution reflecting market statistics, where 𝑦𝑖 represents the

return on investing in stock 𝑖. In financial risk literature, vector 𝑥 is termed the

control and vector 𝑦 is termed the uncertainty vector. The loss function 𝐿(𝑥, 𝑦)

19



ξ = VaRβ(x)
Loss(x, y)

CVaRβ(x) = E[Loss |Loss ≥ ξ]
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Figure 2-1: An illustration of 𝑉 𝑎𝑅𝛽(𝑥) and 𝐶𝑉 𝑎𝑅𝛽(𝑥).

captures the return on investment 𝑥 under 𝑦 and is simply 𝐿(𝑥, 𝑦) = −Σ𝑛
𝑖=1𝑥𝑖𝑦𝑖, i.e.,

the negative of the gain.

Investors wish to provide customers with bounds on the loss they might incur,

such as “the loss will be less than $100 with probability 0.95,” or “the loss will be less

than $500 with probability 0.99.” Value at Risk (VaR) [22] captures these bounds.

Given a probability threshold 𝛽 (say 𝛽 = 0.99), 𝑉 𝑎𝑅𝛽 provides a probabilistic upper

bound on the loss: the loss is less than 𝑉 𝑎𝑅𝛽 with probability 𝛽.

Figure 2-1 gives a graphical illustration of the concepts of 𝑉 𝑎𝑅𝛽 and 𝐶𝑉 𝑎𝑅𝛽

(described below). For a given control vector 𝑥 and probability distribution on the

uncertainty vector 𝑦, the figure plots the probability mass function of individual

scenarios (𝑥, 𝑦), sorted according to the loss associated with each scenario. Assuming

all possible scenarios are considered, the total area under the curve amounts to 1. At

the point on the x-axis marked by 𝜉 =𝑉 𝑎𝑅𝛽(𝑥), the area under the curve is greater

than or equal to 𝛽. Given a probability threshold 𝛽 (say 𝛽 = 0.99) and a fixed control

𝑥, 𝑉 𝑎𝑅𝛽(𝑥) provides a probabilistic upper bound on the loss: the loss is less than

𝑉 𝑎𝑅𝛽(𝑥) with probability 𝛽. Equivalently, 𝑉 𝑎𝑅𝛽(𝑥) is the 𝛽-percentile of the loss

given 𝑥. Value at Risk (𝑉 𝑎𝑅𝛽) is obtained by minimizing 𝑉 𝑎𝑅𝛽(𝑥) (or 𝜉) over all

possible control vectors 𝑥, for a given a probability threshold 𝛽. The VaR notion

has been applied to various contexts, including hedge fund investments [36], energy

markets [10], credit risk [4], and even cancer treatment [31].
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Note that 𝑉 𝑎𝑅𝛽 does not necessarily minimize the loss at the tail (colored in

red in Figure 2-1), i.e., the worst scenarios in terms of probability, which have total

probability mass of at most 1− 𝛽. A closely related risk measure that does minimize

the loss at the tail is termed 𝛽-Conditional Value at Risk (𝐶𝑉 𝑎𝑅𝛽)[35]; 𝐶𝑉 𝑎𝑅𝛽

is defined as the expected loss at the tail, or, equivalently, as the expected loss of

all scenarios with loss greater or equal to 𝑉 𝑎𝑅𝛽. VaR minimization is typically

intractable. In contrast, minimizing CVaR can be cast as a convex optimization

problem under mild assumptions [35]. Further, minimizing CVaR can be a good

proxy for minimizing VaR.

2.2 Probabilistic risk management in networks

Optimizing traffic flow in a network also entails contending with loss, which in this

context reflects the possibility of failing to satisfy user demands when traffic shifts as

link/node failures congest the network. This section presents a high-level overview of

how the VaR and CVaR can be applied to this context. See Chapter 3 for the formal

presentation of TeaVaR.

We can model the WAN as a network graph, in which nodes represent switches,

edges represent links, and each link is associated with a capacity. Links (or, more

broadly, shared risk groups) also have failure probabilities. As in prior studies [17,

30, 19], in each time epoch a set of source-destination switch-pairs (“commodities” or

“flows”) wish to communicate, where each such pair 𝑓 is associated with a demand 𝑑𝑓

and a fixed set of possible routes (or tunnels) 𝑇𝑓 on which its traffic can be routed.

Intuitively, under the formulation of TE optimization as a risk-management chal-

lenge, the control vector 𝑎𝑓,𝑡 captures how much bandwidth is allocated to each flow

on each of its tunnels, and the uncertainty vector 𝑦 specifies, for each tunnel, whether

the tunnel is available (i.e., whether all of its links are up). Note that 𝑦 is stochastic,

and its probability distribution is derived from the probabilities of the underlying fail-

ure events (e.g., link/node failures). The aim is to maximize the bandwidth assigned

to users subject to a desired, operator-specified, availability threshold 𝛽.
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However, applying 𝐶𝑉 𝑎𝑅𝛽 to network resource allocation incurs three nontrivial

challenges.

Achieving fairness across network users. Avoiding starvation and achieving fair-

ness are arguably less pivotal in stock markets, because money is money no matter

where it comes from, but they are essential in network resource allocation. In par-

ticular, TE involves multiple network users, and a crucial requirement is that high

bandwidth and availability guarantees for some users not come at the expense of

unacceptable bandwidth or availability for others. In the formulation, this translates

into carefully choosing the loss function 𝐿(𝑥, 𝑦) so that minimizing the chosen notion

of loss implies that such undesirable phenomena do not occur. This also means we

must represent the control vector as 2-dimensional so that we can have a control

vector associated with every flow. I refer to the control vector as 𝑎𝑓,𝑡 where 𝑓 refers

to the flows and 𝑡 represents a tunnel for that flow. I show how these modifications

are accomplished in Chapter 3.

Capturing fast rerouting of traffic in the data plane. Unlike the above for-

mulation of stock management, in the TE context the consequences of the realiza-

tion of the uncertainty vector cannot be captured by a simple loss function, such as

𝐿(𝑎, 𝑦) = −Σ𝑛
𝑡=1𝑎𝑓,𝑡𝑦𝑡 because the CVaR-based optimization formalism must take into

account that the unavailability of a certain tunnel might imply more traffic having to

traverse other tunnels.

Providing high availability in WAN TE cannot rely on the online global re-

computation of tunnels as this can be too time consuming and adversely impact

availability [30, 38]. To quickly recover from failures, TeaVaR is required to re-

adjust the traffic splitting ratios on surviving tunnels via re-hashing mechanisms

implemented in the data plane [30, 38]. Thus, the realization of the uncertainty vec-

tor, which corresponds to a specification of which tunnels are up, impact the control,

capturing how much is sent on each tunnel.

Achieving computational tractability. A naive formulation of the CVaR-minimizing

TE machinery yields a non-convex optimization problem. Hence, the first challenge

is to transform the basic formulation into an equivalent convex program. We are,
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in fact, able to formulate the TE optimization as a linear program through careful

reformulation using auxiliary variables. In addition, because the number of all pos-

sible failure scenarios increases exponentially with the network size, solving this LP

becomes intractable for realistic network sizes. To address this additional challenge,

I introduce an efficient pruning process that allows us to consider fewer scenarios.

I explain scenario pruning in §3.3 and we show how it substantially improves the

runtime with little effect on accuracy in Chapter 4.
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Chapter 3

Optimization framework

In this chapter, I describe the TeaVaR optimization framework in detail. I formalize

the model and delineate the goals of WAN TE [19, 17, 27, 30] (§3.1). Then, I introduce

TeaVaR’s novel approach to TE, showing that it enables probabilistic guarantees on

network throughput (§3.2).

3.1 Overview of WAN TE

In this section, I give a brief overview of a typical approach to WAN TE. Table 3.1

shows these inputs, along with a the additional inputs and outputs of TeaVaR. The

table also shows the linear program for TeaVaR, which is described in more detail

later in this chapter.

Input. As in other WAN TE studies, I model the WAN as a directed graph 𝐺 =

(𝑉,𝐸), where the vertex set 𝑉 represents switches and edge set 𝐸 represents links

between switches. Link capacities are given by 𝐶 = (𝑐1, . . . , 𝑐|𝐸|) (e.g., in bps) and

as in any TE formulation, the total flow on each link should not exceed its capacity.

TE decisions are made at fixed time intervals (say, every 5 minutes [17]), based on

the estimated user traffic demands for that interval. In each time epoch, there is a

set of source-destination switch-pairs (“commodities” or “flows”); each such pair 𝑓 is

associated with a demand 𝑑𝑓 and a fixed set of paths (or “tunnels”) 𝑇𝑓 ∈ 𝑇 on which

its traffic should be routed. TeaVaR assumes the tunnels are part of the input.
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TE Input

𝐺(𝑉,𝐸) Network graph with switches 𝑉 and links 𝐸.
𝑐𝑒 ∈ 𝐶 Bandwidth capacity of link 𝑒 ∈ 𝐸.
𝑑𝑓 ∈ 𝐷 Bandwidth demand of flow 𝑓 ∈ 𝐹 .
𝑇𝑓 ∈ 𝑇 Set of tunnels for flow 𝑓 ∈ 𝐹 .

Additional
TeaVaR Input

𝛽 Target availability level (e.g.,99.9%).
𝑠 ∈ 𝑆 Network state corresponding to failure scenarios

of shared risk groups.
𝑝𝑞 Probability of network state 𝑞.

Auxiliary Variables

𝑢𝑠 Total loss in scenario 𝑠.
𝑡𝑠,𝑓 Loss on flow 𝑓 in scenario 𝑠

𝑌𝑠,𝑡 1 if tunnel 𝑡 is available in scenario 𝑠, 0 otherwise
𝑋𝑡,𝑒 1 if tunnel 𝑡 uses edge 𝑒, 0 otherwise

TE Output
𝑏𝑓 Total bandwidth for flow 𝑓 .
𝑎𝑓,𝑡 Allocated traffic on tunnel 𝑡 ∈ 𝑇𝑓 for flow 𝑓 ∈ 𝐹 .

Additional
TeaVaR Output

𝛼 “Loss” (a.k.a the Value at Risk (VaR)).

minimize 𝛼 + 1
1−𝛽

∑︁
𝑠∈𝑆

𝑝𝑠𝑢𝑠

subject to
∑︁

𝑓∈𝐹,𝑡∈𝑇𝑓

𝑎𝑓,𝑡𝑋𝑡,𝑒 ≤ 𝑐𝑒 ∀𝑒

𝑢𝑠 ≥ 𝑡𝑓,𝑠 − 𝛼 ∀𝑓, 𝑠

where 𝑡𝑠,𝑓 = 1−
∑︀

𝑡∈𝑡𝑓
𝑎𝑓,𝑡𝑌𝑠,𝑓

𝑑𝑓
∀𝑓, 𝑠

Table 3.1: Key notations in the TeaVaR formulation. The original optimization
problem is minimizing (3.3) subject to (3.1) – (3.2). Here, we show the LP formula-
tion; see §3.2 for its derivation.

In Chapter 4, I evaluate the impact of the tunnel selection scheme (e.g., 𝑘-shortest

paths, edge-disjoint paths, oblivious-routing) on performance. My evaluation shows

the TeaVaR optimization improves the achievable utilization-availability balance for

all considered tunnel-selection schemes.

Output. The output of TeaVaR, consists of two parts (see Table 3.1): (1) the total

bandwidth 𝑏𝑓 that flow (source-destination pair) 𝑓 is permitted to utilize (across all

of its tunnels in 𝑇𝑓 ); (2) a specification for each flow 𝑓 of how its allocated bandwidth

𝑏𝑓 is split across its tunnels 𝑇𝑓 . The bandwidth allocated on tunnel 𝑡 is denoted by
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𝑎𝑓,𝑡.

Optimization goal. Previous studies of TE considered optimization goals such

as maximizing total concurrent flow [37, 17, 6, 30], max-min fairness [34, 19, 11],

minimizing link over-utilization [27], minimizing hop count [28], and accounting for

hierarchical bandwidth allocations [26]. As formalized below, an appropriate choice

for the present context is selecting the 𝑎𝑓,𝑡s (per-tunnel bandwidth assignments) in

a manner that maximizes the well-studied maximum-concurrent-flow objective [37].

This choice of objective will enable us to maximize network throughput while achiev-

ing some notion of fairness in terms of availability across network users. In §3.2, I

discuss ways to extend the framework to other optimization objectives.

Under maximum-concurrent-flow, the goal is to maximize the value 𝛿 ∈ [0, 1] such

that at least an 𝛿-fraction of each flow 𝑓 ’s demand is satisfied across all flows. For

example, 𝛿 = 1 implies all demands are fully satisfied by the resulting bandwidth

allocation, while 𝛿 = 1
3

implies at least a third of each flow’s demand is satisfied.

3.2 TeaVaR: deriving the LP

TeaVaR’s additional inputs and outputs are listed in Table 3.1. Given a target

availability level 𝛽, the goal is to cast TE optimization as a CVaR-minimization

problem whose output is a bandwidth allocation to flows that can be materialized

with probability of at least 𝛽. Doing so requires careful specification of (𝑖) the “control”

and “uncertainty” vectors, as described in Chapter 2, and (𝑖𝑖) a “loss function” that

provides fairness and avoids starvation across network flows. The formulation is shown

in Table 3.1. In this section, I describe in detail how this formula is derived.

3.2.1 Probabilistic failure model

I consider a general failure model, consisting of a set of failure events 𝑍. A failure

event 𝑧 ∈ 𝑍 represents a set of SRGs becoming unavailable (the construction of a set

of SRGs is described elsewhere [38, 25], and §4.1). Importantly, while failure events

in my formulation are uncorrelated, this does not preclude modeling correlated link
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failures. Consider a failure event 𝑧 representing a technical failure in a certain link

𝑙 and another failure event 𝑧′ representing a technical failure in a switch or a power

outage that will cause multiple links, including 𝑙, to become unavailable concurrently.

Note that even though link 𝑙 is inactive, whether 𝑧 or 𝑧′ is realized, 𝑧 and 𝑧′, which

capture failures of different components, are independent events.

Each failure event 𝑧 occurs with probability 𝑝𝑧. As described earlier, the failure

probabilities are obtained from historical data (see Chapter 4 for more details on

estimation techniques, as well as sensitivity analysis for inaccuracies in these esti-

mations). I denote by 𝑠 = (𝑠1, . . . , 𝑠|𝑍|) a network state, where each element 𝑠𝑧 is a

binary random variable, indicating whether failure event 𝑧 occurred (𝑠𝑧 = 1) or not.

For example, for a network with 15 SRGs, the possible set of events (𝑍) is a vector

with 15 elements, where each element indicates whether the corresponding SRG has

failed or not. For example, 𝑠 = (0, . . . , 0, 1) captures the network state in which only

SRG_15 is down. More formally, let 𝑆 be the set of all possible states, and let 𝑝𝑠 de-

note the probability of state 𝑠 = (𝑠1, . . . 𝑠|𝑍|) ∈ 𝑆. Hence, the probability of network

state 𝑠 can be obtained using the following equation,

𝑝𝑠 = 𝑃 (𝑠1 = 𝑠1, . . . , 𝑠|𝑍| = 𝑠|𝑍|) = Π𝑧

(︀
𝑠𝑧𝑝𝑧 + (1− 𝑠𝑧)(1− 𝑝𝑧)

)︀
.

The uncertainty vector specifies which tunnels are up. I define 𝑦 as a vector

of size |𝑇 |, where each vector element 𝑦𝑡 is a binary random variable that captures

whether tunnel 𝑡 is available (𝑦𝑡 = 1) or not (𝑦𝑡 = 0). This random variable depends

on realizations of relevant failure events. For example, 𝑦𝑡 will equal 0 if one of the

links or switches on the tunnel is down. Since each random variable 𝑦𝑡 is a function

of the random network state 𝑠, we often use 𝑦𝑡(𝑠), and 𝑦(𝑠) to denote the resulting

vector of random variables. In the LP formulation, I pre-compute these values to

provide fast look-ups and store them in the matrix 𝑌𝑠,𝑡, where 𝑌𝑠,𝑡 is a 1 if tunnel 𝑡 is

available in scenario 𝑠 or 0 if it is not.

The control vector specifies how bandwidth is assigned to tunnels. Recall

that the output 𝑎 in my WAN TE formulation captures the traffic allocation for each
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flow on each of its tunnels. This is the control vector for my CVaR-minimization.

As in TE schemes, such per tunnel bandwidth assignment has to ensure the edge

capacities are respected, i.e., satisfy the following constraint:

∑︁
𝑓∈𝐹,𝑡∈𝑇𝑓

𝑎𝑓,𝑡𝑋𝑡,𝑒 ≤ 𝑐𝑒, ∀𝑒 ∈ 𝐸. (3.1)

Here, this constraint must sum all overlapping flows on any given edge. The matrix

𝑋𝑡,𝑒 is a binary variable that represents the edges for each tunnel as a 1 if tunnel 𝑡

uses a certain edge 𝑒, and 0 otherwise. This matrix is pre-computed to allow fast

look-ups. To account for potential failures, I allow the total allocated bandwidth per

user 𝑎,
∑︀

𝑡∈𝑇𝑓
𝑎𝑓,𝑡, to exceed its demand 𝑑𝑓 .

3.2.2 Loss function

I define the loss function in two steps. First, I define a loss function for each flow,

called the flow-level loss. Then, I define a total loss as a function of the flow-level

losses for all flows, known as the network-level loss.

Flow-level loss. Recall that in the TE formulation, the optimization objective is

to assign the control variables 𝑎𝑓,𝑡 (per-tunnel bandwidth allocations) in a manner

that maximizes the concurrent-flow, i.e., maximizes the value 𝛿 for which each flow

can send at least a 𝛿-fraction of its demand. To achieve this, loss in the framework is

measured in terms of the fraction of demand not satisfied (i.e., 1− 𝛿). My goal thus

translates into generating the per-tunnel bandwidth assignments that minimize the

fraction of demand not satisfied for a specified level of availability 𝛽.

In my formulation, the maximal satisfied demand for flow 𝑓 is given by the sum

of the allocations on the tunnels for that flow,
∑︀

𝑡∈𝑇𝑓
𝑎𝑓,𝑡𝑌𝑠,𝑓 . Thus, the loss for each

flow 𝑓 with respect to its demand 𝑑𝑓 is captured by
[︁
1−

Σ𝑡∈𝑇𝑓
𝑎𝑓,𝑡𝑌𝑠,𝑓

𝑑𝑓

]︁+
, where [𝑧]+ =

max{𝑧, 0}; note that the [+] operator ensures that the loss is not negative (hence,

the optimization will not gain by sending more traffic than the actual demand). This

notion of per-flow loss captures the loss of assigned bandwidth for a given network

state 𝑠.
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Network-level loss function. To achieve fairness, in terms of availability, we define

the global loss function as the maximum loss across all flows, i.e.,

𝐿(𝑎, 𝑦) = max
𝑖

[︂
1−

Σ𝑡∈𝑇𝑓
𝑎𝑓,𝑡𝑦𝑟

𝑑𝑖

]︂+
. (3.2)

While this loss function is nonlinear, I am able to transform into a linear constraint

and thus turn the optimization problem into a linear program (LP) in the next section.

3.2.3 Objective function

To formulate the optimization objective, I introduce the mathematical definitions of

𝑉 𝑎𝑅𝛽 and 𝐶𝑉 𝑎𝑅𝛽. For a given loss function 𝐿, the 𝑉 𝑎𝑅𝛽(𝑥) is defined as 𝑉𝛽(𝑎) =

min{𝜉 | 𝜓(𝑎, 𝜉) ≥ 𝛽}, where 𝜓(𝑎, 𝜉) = 𝑃 (𝑠 | 𝐿(𝑎, 𝑦(𝑠)) ≤ 𝜉), and 𝑃 (𝑞 | 𝐿(𝑎, 𝑦(𝑠)) ≤ 𝜉)

denotes the cumulative probability mass of all network states satisfying the condition

𝐿(𝑎, 𝑦(𝑠)) ≤ 𝜉. 𝐶𝑉 𝑎𝑅𝛽 is simply the mean of the 𝛽-tail distribution of 𝐿(𝑎, 𝑦), or

put formally:

𝐶𝑉 𝑎𝑅𝛽(𝑎) =
1

1− 𝛽
∑︁

𝐿(𝑎,𝑦(𝑠))≥𝑉𝛽(𝑎)

𝑝𝑞𝐿(𝑎, 𝑦(𝑠)).

Note that the definition of 𝐶𝑉 𝑎𝑅𝛽 utilizes the definition of 𝑉 𝑎𝑅𝛽. To minimize

𝐶𝑉 𝑎𝑅𝛽, I define the following potential function

𝐹𝛽(𝑎, 𝛼) = 𝛼 +
1

1− 𝛽
𝐸[[𝐿(𝑎, 𝑦)− 𝛼]+]

= 𝛼 +
1

1− 𝛽
∑︁
𝑠

𝑝𝑠[𝐿(𝑎, 𝑦(𝑠))− 𝛼]+. (3.3)

The optimization goal is to minimize 𝐹𝛽(𝑥, 𝛼) over 𝑋,ℛ, subject to (3.1) – (3.2).

I leverage the following theorem, which states that by minimizing the potential func-

tion, the optimal 𝐶𝑉 𝑎𝑅𝛽 and (approximately) also the corresponding 𝑉 𝑎𝑅𝛽 are ob-

tained.

Theorem 1 [36] If (𝑎*, 𝛼*) minimizes 𝐹𝛽, then not only does 𝑎* minimize the 𝐶𝑉 𝑎𝑅𝛽
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𝐶𝛽 over 𝑋, but also

𝐶𝛽(𝑎
*, 𝛼*) = 𝐹𝛽(𝑎

*, 𝛼*), (3.4)

𝑉𝛽(𝑎
*) ≈ 𝛼*. (3.5)

The beauty of this theorem is that although the definition of 𝐶𝑉 𝑎𝑅𝛽 uses the

definition of 𝑉 𝑎𝑅𝛽, we do not need to work directly with the 𝑉 𝑎𝑅𝛽 function 𝑉𝛽(𝑎)

to minimize 𝐶𝑉 𝑎𝑅𝛽. This is significant since, as mentioned above, 𝑉𝛽(𝑎) is a non-

smooth function which is hard to deal with mathematically. The statement of the

theorem uses the notation ≈ to denote that with high probability, 𝛼* is equal to

𝑉𝛽(𝑎
*). When this is not so, 𝛼* constitutes an upper bound on the 𝑉 𝑎𝑅𝛽. The actual

𝑉 𝑎𝑅𝛽 can be easily obtained from 𝛼*, as discussed in Appendix A.1.

3.2.4 Linearizing the loss function

I am interested in minimizing

𝐹𝛽(𝑎, 𝛼) = 𝛼 +
1

1− 𝛽
𝐸[max{0, 𝐿(𝑥, 𝑦)− 𝛼}] (3.6)

= 𝛼 +
1

1− 𝛽
Σ𝑞𝑝𝑦[𝐿(𝑥, 𝑦(𝑞))− 𝛼]+, (3.7)

In what follows, I “linearize" the objective function by adding additional (linear)

constraints. I introduce a new set of variables 𝑢 = {𝑢𝑠}, where 𝑢𝑠 represents the total

loss of a given network state. I rewrite the objective function as

𝐹𝛽(𝑠, 𝛼) = 𝛼 +
1

1− 𝛽
∑︁
𝑠

𝑝𝑠𝑢𝑠, (3.8)

and add the following constraints

𝑢𝑠 ≥ 𝐿(𝑎, 𝑦(𝑠))− 𝛼 ∀𝑠 (3.9)

𝑢𝑠 ≥ 0. ∀𝑠 (3.10)
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Observe that minimizing 𝐹 w.r.t. 𝑎 and 𝛼 is equivalent to minimizing 𝐹 w.r.t. 𝑠, 𝑎, 𝛼.

I have removed the initial max operator and + operator in (3.6). However, 𝐿(·, ·) still

involves a max operator. We must rewrite (3.9) as 𝑢𝑠 + 𝛼 ≥ 𝐿(𝑎, 𝑦(𝑠)); now we can

materialize the max operator through the following inequalities

𝑢𝑠 + 𝛼 ≥ 0, ∀𝑠 (3.11)

𝑢𝑠 + 𝛼 ≥ 𝑡𝑠,𝑓 ∀𝑠, 𝑓, (3.12)

where

𝑡𝑠,𝑓 = 1−
Σ𝑡∈𝑇𝑓

𝑎𝑓,𝑡𝑦𝑟(𝑠)

𝑑𝑓
. (3.13)

We end up with an LP with decision variables 𝑎, 𝛼, 𝑢𝑠, 𝑡𝑠,𝑓 (𝑢𝑠 and 𝑡𝑠,𝑓 can be

viewed as auxiliary variables); the objective of the LP is minimizing (3.8) subject to

(3.1), (3.10)–(3.13).

3.2.5 Routing (and re-routing) in TeaVaR

Bandwidth allocations. The total bandwidth that flow 𝑓 is permitted to utilize

(across all tunnels in 𝑇𝑓 ) is given by 𝑏𝑓 . Clearly, 𝑏𝑓 should not exceed flow 𝑓 ’s

demand 𝑑𝑓 to avoid needlessly wasting capacity. However, I do not add an explicit

constraint for this requirement. Instead, I embed it implicitly in the loss function

(3.2). Once the solution is computed, each flow 𝑓 is given: (i) the total allowed

bandwidth (1 − 𝑉𝛽(𝑎*))% of its demand; i.e., 𝑏𝑓 = (1 − 𝑉𝛽(𝑎*))𝑑𝑓 ; and (ii) a weight

assignment 𝑤𝑓,𝑡, where 𝑤𝑓,𝑡 =
𝑎*𝑓,𝑡∑︀

𝑡∈𝑇𝑓
𝑎*𝑓,𝑡

.

Tunnel Weights As in other TE solutions (e.g., [30, 38]), I use a simple rule for flow

re-assignment in the event of network failures: the traffic of flow 𝑓 is split between

all surviving tunnels in 𝑇𝑓 so that each tunnel 𝑡 carries traffic proportionally to 𝑤𝑓,𝑡.

Put formally, let 𝑇𝑓 ⊆ 𝑇𝑓 be the subset of 𝑓 ’s tunnels that are available. Then, each

tunnel 𝑡 ∈ 𝑇𝑓 carries 𝑤𝑓,𝑡∑︀
𝑡∈𝑇𝑓

𝑤𝑓,𝑡
𝑏𝑓 traffic (i.e., its proportional share of 𝑏𝑓 ). I henceforth

refer to this allocation rule as the proportional assignment rule.

Proportional assignment does not require global coordination/computation upon
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Figure 3-1: A diagram of the scenario space pruning algorithm with assumptions 1)
and 2). The algorithm recursively searches the tree depth first, updating 𝑝𝑞 at each
level until 𝑝𝑞 < 𝑐 upon which it regresses one level.

failures and can be easily implemented in the data plane via (re-)hashing. Because

the proportional assignment rule is not directly encoded in the CVaR minimization

framework, traffic re-assignment might result in congestion, i.e., violating constraint

(3.1). Nevertheless, it turns out that this rather simple rule guarantees such violation

occurs with very low probability (upper-bounded by 1− 𝛽). Formally,

Theorem 2 Under TeaVaR, each flow 𝑖 is allocated bandwidth (1− 𝑉𝛽(𝑎*))𝑑𝑓 and

no link capacity is exceeded with probability of at least 𝛽.

See Appendix A.2 for the proof.

3.3 Scenario pruning algorithm

As discussed earlier, applying TeaVaR to a large network is challenging because

the number of network states, representing combinations of link failures, increases

exponentially with the network size. To deal with this, I devise a scenario pruning

algorithm to efficiently filter out scenarios that occur with negligible probability. The

main idea behind the algorithm is to use a tree representation of the different scenar-

ios, where the scenario probability decreases with movement away from the root. The

tree is traversed recursively with a stopping condition of reaching a scenario whose
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probability is below a cutoff threshold. The pruned scenarios are accounted for in

the optimization as follows. To give an upper-bound on the 𝐶𝑉 𝑎𝑅𝛽 (equivalently,

a lower-bound on the throughput), I collapse all the pruned scenarios into a single

scenario with probability equal to the sum of probabilities of the pruned scenarios. I

then associate a maximal loss of 1 with that scenario. In §4.7, I evaluate the impact

of the scenario pruning algorithm on both running time and accuracy.

Recall that a scenario is represented as a set of failure events. I introduce the idea

of a scenario cutoff 𝑐, and prune out all scenarios that occur with probability 𝑝 < 𝑐.

Generally, I refer to failure events as independent events that together can make up a

network state. A network state can be modeled as a bitmap where each bit represents

whether or not an edge can carry traffic. I call this bitmap a scenario. Each failure

event, such as a fiber cut, a node outage, or a correlated link failure, can lead to a

scenario in which one or more bits in a network state is flipped.

The scenario pruning algorithm (see Figure 3-1 for an illustration), uses a tree

representation of the different scenarios, where the root note is the scenario where no

failure event occurs [0, 0, . . . , 0], and every child node differs from its parent by one bit.

The tree is constructed such that each flipped bit must be to the right of the previously

flipped bit to prevent revisiting any previously visited states. Assuming each failure

event occurs with probability less than 0.5, the scenario probability decreases as

we traverse away from the root. Accordingly, we traverse the tree in a depth-first

search until the condition 𝑝𝑞 < 𝑐 is met, at which point no further scenarios down

that path need to be searched. It is important to efficiently calculate the scenario

probabilities while traversing the tree. To do so, I update the probability of a child

scenario incrementally from its parent via 𝑝𝑛𝑞 ← 𝑝𝑛−1
𝑞

1−𝑝𝑧
𝑝𝑧

; this update rule follows

from immediately from the formula 𝑝𝑞 = 𝑃 (𝑞1 = 𝑞1, . . . , 𝑞|𝑍| = 𝑞|𝑍|) = Π𝑧

(︀
𝑞𝑧𝑝𝑧 + (1−

𝑞𝑧)(1 − 𝑝𝑧)
)︀
. Note that the tree is not balanced, because if we consider failures in

order, taking the leftmost path in the tree, we do not have to revisit any scenarios

where failure 𝑧 has previously occurred.
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Chapter 4

Evaluating TeaVaR

In this section, I present the evaluation of TeaVaR. I begin by describing the ex-

perimental framework and evaluation methodology (§4.1). The experimental results

focus on the following elements:

1. Benchmarking TeaVaR’s performance against the state-of-the-art TE schemes

(§4.2).

2. Examining TeaVaR’s robustness to noisy estimates of failure probabilities (§4.6).

3. Quantifying the effect of scenario pruning on the running time and the quality of

the solution (§4.7).

Topology Name #Nodes #Edges
B4 12 38
IBM 18 48
ATT 25 112
X-Net ≈ 30 ≈ 100

Table 4.1: Network topologies used in the evaluations. For confidentiality reasons, I
do not report exact numbers for the X-Net topology.
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Figure 4-1: CDF of failure probabilities used in our experiments. The exact value of
𝑚 in (a) is not shown due to confidentiality reasons. The shape and scale parameters
in (b) are 0.8 and 10−4, respectively.

4.1 Experimental setting

Topologies. I evaluate TeaVaR on four network topologies: B4, IBM, ATT, and

X-Net. The first three topologies (and their traffic matrices) were obtained from the

authors of SMORE [27]. X-Net is the network topology of a large cloud provider

in North America. See Table 4.1 for a specification of network sizes. The empirical

data from the X-Net network consists of the following: the capacity of all links (in

Gbps) and the traffic matrices (source, destination, amount of data in Mbps) over

four months at a resolution of one sample per hour. Data on failure events include

the up/down state of each link at 15-minute granularity over the course of a year, as

well as a list of possible shared risk groups. Data on ATT, B4, and IBM topologies

include a set of at least 24 demand matrices and link capacities, but per-link failure

probabilities are missing. Hence, I use a Weibull distribution derived from the X-Net

measurements and change its parameters over the course of the simulations.

Tunnel selection. TE schemes [24, 20, 17, 30] often use link-disjoint tunnels for

each source-destination pair. However, recent work shows performance improvement

by using oblivious tunnels (interchangeably also referred to as oblivious paths) [27].

Because TeaVaR’s optimization framework is orthogonal to tunnel selection, I run

simulations with a variety of tunnel-selection schemes, including oblivious paths, link

disjoint paths, and 𝑘-shortest paths. As I show later in the section, TeaVaR achieves

higher throughput regardless of the tunnel selection algorithm. We also study the
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impact of tunnel selection on TeaVaR and find that combining TeaVaR with the

tunnel selection of oblivious-routing [27] leads to better performance (§4.2).

Deriving failure probability distributions. For each link 𝑒, I examine historical

data and track whether 𝑒 was up or down in a measured time epoch. Each epoch is a

15-minute period. I obtain a sequence of the form (𝜓1, 𝜓2, . . .) such that‘ each 𝜓𝑡 spec-

ifies whether the link was up (𝜓𝑡 = 1) or down (𝜓𝑡 = 0) during the 𝑡th measured time

epoch. From this sequence, another sequence (𝛿1, 𝛿2, . . . , 𝛿𝑀) is derived such that 𝛿𝑗 is

the number of consecutive time epochs the link was up prior to the 𝑗th time it failed.

For example, from the sequence (𝜓1, 𝜓2, . . . , 𝜓12) = (1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0), I de-

rive the sequence (𝛿1, 𝛿2, 𝛿3) = (2, 3, 1) (the link was up for 2 time epochs before the

first failure, 3 before the second failure, and 1 before the last failure). An unbiased

estimator of the mean uptime is given by 𝑈 =
Σ𝑀

𝑗=1𝛿𝑗

𝑀
. I make a simplified assumption

that the link up-time is drawn from a geometric distribution (i.e., the failure proba-

bility is fixed and consistent across time epochs). Then, the failure probability 𝑝𝑒 of

link 𝑒 is simply the inverse of the mean uptime, that is, 𝑝𝑒 = 1
𝑈
. Note that we can

use this exact analysis for other shared-risk groups, such as switches.

Figure 4-1(a) plots the cumulative distribution function (CDF) for the failure

probability across the network links, derived by applying the above analysis method-

ology to the empirical availability traces of the X-Net network. The x-axis on the plot

represents the failure probability, parametrized by 𝑚. The exact value of 𝑚 is not

disclosed for reasons of confidentiality. Nonetheless, the important takeaway from this

figure is that the failure probabilities of different links might differ by orders of mag-

nitude. To accommodate the reproducibility of results, I obtain a Weibull probability

distribution which fits the shape of the empirical data. The Weibull distribution,

which has been used in prior study of failures in large backbones [32], is used here to

model failures over time for topologies for which I do not have empirical failure data.

I denote the Weibull distribution with shape parameter 𝜆 and scale parameter 𝑘 by

𝑊 (𝜆, 𝑘). In Figure 4-1(b), I plot the Weibull distribution used in the evaluation, as

well as the parameters needed to generate it. Throughout the experiments, I change

the shape and scale parameters of the Weibull distribution and study the impact of
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Figure 4-2: Comparison of TeaVaR against various TE schemes under different
tunnel selection algorithms. All schemes in (a) and (b) use oblivious paths, and all
schemes in (c) and (d) use edge disjoint paths. The term availability refers to the
percentage of scenarios that meet the 100% demand-satisfaction requirement.

probability distribution on performance.

Optimization. The optimization framework uses the Gurobi LP solver [16] and is

implemented using the Julia optimization language [8].

4.2 Throughput vs. availability

I examine the performance of different TE schemes with respect to both throughput

and availability.

Setup. I benchmark TeaVaR against several approaches: SMORE [27], FFC [30],

MaxMin (in particular, the algorithm used in B4 [19, 11]), and ECMP [12]. SMORE

minimizes the maximum link utilization without explicit guarantees on availability,

FFC maximizes the throughput while explicitly considering failures, MaxMin maxi-

mizes minimum bandwidth per user [11], and TeaVaR minimizes the CVaR for an

input probability. When link failures occur, traffic is redistributed across tunnels ac-
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cording to the proportional assignment mechanism (see §3.2) without re-optimizing

weights. In our evaluations, I am concerned with both the granted bandwidth and

the probabilistic availability guarantee it comes with. In TeaVaR, the probability is

explicit (controlled by the 𝛽 parameter in the formulation as shown in Eq. 3.3). In

FFC, the per-user bandwidth is granted with 100% availability for scenarios with up

to 𝑘-link failures. However, to fairly compare the ability of the algorithm to accom-

modate scaled-up demands, I allow all algorithms to send the entire demand (at the

expense of potential degradation in availability).

Availability vs. demand scale. I first seek to analyze the availability achieved

by various TE schemes as demand is scaled up. Given that current networks are

designed with traditional worst-case assumptions about failures, all topologies are

over-provisioned. Hence, I begin with the input demands, compute the availability

achieved when satisfying them for different schemes, and then scale the demands by

introducing a (uniform) demand scale-up factor 𝑠 ≥ 1 which multiplies each entry in

the demand matrix.

Availability is calculated by running a post-processing simulation in which I induce

failure scenarios according to their probability of occurrence, and attempt to send the

entirety of the demand through the network. For each scenario, I record the amount of

unsatisfied demand (loss) for each flow, as well as the probability associated with that

scenario. The sum of the probabilities for scenarios where demand is fully satisfied

reflects the availability in that experiment. For example, if a TE scheme’s bandwidth

allocation is unable to fully satisfy demand in 0.1% of scenarios, it has an availability

of 99.9%. I then scale the demand matrix and repeat the above analysis for at least

24 demand matrices per topology. In Figure 4-2, I summarize the results by depicting

the demand-scale vs. the corresponding availability.

The results show a consistent trend: TeaVaR achieves higher demand scale for

a given availability level. In particular, for any target availability level, TeaVaR

achieves up to twice the demand scale-up compared to other approaches. Notably, in

X-Net topology and with oblivious paths, TeaVaR is able to scale the demand by

a factor of 3.4, while MaxMin achieves a scale up of 2.6. The remaining approaches
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Figure 4-3: Averaged throughput guarantees for different 𝛽 values on ATT, B4, and
IBM topologies. TeaVaR is the only scheme that can explicitly optimize for a given
𝛽. For all other schemes, the value on the x-axis is computed based on achieved
throughput.

cannot scale beyond 1.4x the original demand.

4.3 Achieved throughput

I next demonstrate the tradeoff between a target availability threshold and the achieved

throughput without scaling the demand. In the previous set of experiments, avail-

ability was measured as the probability mass of scenarios in which demand is fully

satisfied (“all-or-nothing” requirement). In contrast, in this set of experiments, I mea-

sure the fraction of the total demand that can be guaranteed for a given availability

target (or the throughput). This fraction is optimized explicitly in TeaVaR for a

given value of 𝛽. For other TE schemes, I obtain the fraction of demand using a

similar post-processing method as before: for each failure scenario, I simulate the

outcome of sending the entire demand through the network, sort the scenarios in

increasing loss values and report the demand fraction at the 𝛽-percentile (i.e., the

throughput is greater or equal to that value for 𝛽 percent of scenarios). The range of

availability values is chosen according to typical availability targets [18].

Figure 4-3 plots the average throughput for ATT, B4, and IBM topologies. For

each TE scheme, I report the results under the tunnel selection algorithm which has
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TeaVaR FFC1 FFC2

Probability Avg𝑏 Min𝑏 Avg𝑏 Min𝑏 Avg𝑏 Min𝑏

90% 100% 100% 88.32% 4.62% 29.76% 0%
95% 99.9% 99.9% 88.32% 4.62% 29.76% 0%
99% 95.87% 95.87% 88.32% 4.62% 29.76% 0%

99.9% 92.53% 92.53% 88.32% 4.62% 29.76% 0%
99.99% 82.78% 82.78% 0% 0% 29.76% 0%

Table 4.2: The mathematical bandwidth guarantees of TeaVaR and FFC averaged
across 3 topologies, and 10 demand matrices. Avg𝑏 represents the average band-
width for all flows, guaranteed with probability 𝑝% of the time. Min𝑏 represents the
minimum bandwidth of all flows.

performed the best (SMORE, TeaVaR and MaxMin with oblivious, and FFC with

link-disjoint paths). The results demonstrate that TeaVaR is able to achieve higher

throughput for each of the target availability values. This is because it can optimize

throughput for an explicit availability target within a probabilistic model of failures.

4.4 Mathematical guarantees with tunable 𝛽.

The previous two experiments used a post processing simulation is used to calculate

availability and throughput. This simulation allows sending all of the demand in the

network to compare fairly across all TE schemes instead of adhering to the mathe-

matical guarantees from each scheme. FFC and TeaVaR (explained in §3.2.5) both

give permitted bandwidth amounts for each flow (𝑏𝑖) to ensure their mathematical

guarantees hold. FFC guarantees that the amount sent will be successfully received

in all k-link failure scenarios. TeaVaR guarantees that the amount sent will be re-

ceived 𝛽% of the time. In Table 4.2, instead of sending all the demand, I assume

the permitted bandwidth amounts (𝑏𝑖) and report the guaranteed average and min-

imum across all flows. Results are averaged across multiple topologies and demand

matrices. While FFC𝑘 gives a single bandwidth amount that only holds up to the

probability mass of the k-failure scenarios, we see TeaVaR can achieve significant

bandwidth improvements by optimizing explicitly for a given probability. We also
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Figure 4-4: The effect of tunnel selection scheme on TeaVaR’s performance, quan-
tified by the resulting 𝐶𝑉 𝑎𝑅𝛽 (or loss) for different values of 𝛽. TeaVaR using
oblivious paths has better performance (lower loss).

see that TeaVaR uses max-min bandwidth allocation so that the average is also

the minimum allowed per flow. In contrast, FFC starves certain flows to achieve a

slightly higher average bandwidth. The paper on FFC [30] mentions an iterative ver-

sion of FFC that can avoid starvation, but the LP is not inherently built for fairness

or flexible guarantees like TeaVaR.

4.5 Impact of tunnel selection.

So far, TeaVaR has been simulated with either link-disjoint or oblivious tunnels [27]

schemes. I now analyze the effect of other tunnel selections on TeaVaR’s perfor-

mance. I demonstrate that while path selection is an important aspect of any TE

scheme, no specific choice is needed for TeaVaR’s success. In Figure 4-4, I plot the

obtained 𝐶𝑉 𝑎𝑅𝛽 as a function of beta for various tunnel selection schemes: 𝑘-shortest

paths with 3 or 4 paths, FFC’s link disjoint paths, and SMORE’s oblivious rout-

ing. TeaVaR performs comparably well regardless of the tunnel selection scheme.

However, the figure shows that oblivious paths are still superior. For example, the

obtained 𝐶𝑉 𝑎𝑅𝛽 value is at least 20% better for 𝛽 = 0.99 than in any other tunnel

selection scheme. These results indicate that an oblivious-routing tunnel selection is

a good choice to complement TeaVaR. Oblivious routing is intended to avoid link
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over-utilization through diverse and low-stretch path selection. Intuitively, these path

properties are useful for TeaVaR, providing the optimization framework with a set

of tunnels that can provide high availability.

4.6 Robustness to probability estimates

TeaVaR uses a probabilistic model of network failures. In particular, the optimiza-

tion framework explicitly accounts for the probabilities of failure events, such as link

failures. These probabilities are estimated by analyzing the historical time-series of

up/down status and are inherently prone to estimation errors, regardless of the tech-

nique used (I provide a basic technique here, but more sophisticated techniques, e.g.,

based on machine-learning, can be applied).

To examine the effects of such inaccuracies, I use the following methodology. I

assume there is a set of probabilities that is the ground-truth, and the actual per-

formance of any TE solution should be evaluated against these probabilities. In

particular, I evaluate two versions of TeaVaR: (i) TeaVaR using the ground-truth

probabilities; (ii) TeaVaR using a perturbed version of the ground-truth probabilities

(reflecting estimation errors). The generation of (ii) requires a magnitude of noise 𝑛.

The probabilities that are given to TeaVaR as input are generated via 𝑝𝑧 = 𝑝𝑧+𝑝𝑧𝑛𝑟,

where 𝑟 is random noise, distributed uniformly on [−1, 1].

For each noise level in Table 4.3, I report the percent error in average throughput

across all scenarios compared to the error when optimized using the ground-truth

Noise in probability estimations % error in throughput
1% 1.43%
5% 2.95%
10% 3.07%
15% 3.95%
20% 6.73%

Table 4.3: The effect of inaccurate probability estimations on TeaVaR’s perfor-
mance. The decrease in throughout is caused by running TeaVaR with the ground-
truth probabilities {𝑝𝑞}.
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Figure 4-5: Impact of scenario pruning on accuracy and runtime.I use 10−4 as the
cutoff threshold for ATT and 10−5 for all other topologies. (a) The cutoff thresholds
cover more than 99.5% of all possible scenarios. (b) The error incurred by pruning
scenarios is less than 5% in all cases. (c) The cutoffs applied lead to manageable
running times.

probabilities. The noise has a relatively small effect on the solution quality. This

is because fine-grained distribution modeling pays off less than intuition might lead

us to believe. For example, when the perturbed probabilities are within 10% of the

ground truth, TeaVaR’s throughput is within 3% of the solution obtained with the

actual probabilities.

4.7 Sensitivity to scenario pruning

In §3.2 I described an efficient algorithm for pruning scenarios. I now elaborate on

this algorithm and evaluate its impact on performance and accuracy. The first step

is to see what percentage of the scenario space was being pruned by various cutoff

thresholds. The cutoff threshold is defined in §3.3. Figure 4-5(a) shows the probability

mass of all the scenarios remaining in the optimization after a given cutoff. Modest

cutoffs leave a large portion, over 95% of the total space. Figure 4-5(b) shows the

effect of pruning on accuracy. Specifically, I compare the case of the CVaR value

with pruning to the case where we consider 100% of the scenario space (“optimal”)

using a standard error formula, |𝐶𝑉 𝑎𝑅𝛽,cutoff −𝐶𝑉 𝑎𝑅𝛽,optimal |
𝐶𝑉 𝑎𝑅𝛽,optimal

. With a cutoff similar to that

used in the bulk of my experiments (10−4 for ATT and 10−5 for all other topologies),

we achieve high scenario coverage with less than 5% error. It is also important to

note that the speed benefits of the cutoff are substantial, as shown in Figure 4-5(c).

Using cutoff values reduces the computation time from minutes (in the near-optimal
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case) to a few tens of seconds, a plausible compute overhead for typical TE periods of

5-15 minutes. Note that all time complexity benchmarks were performed on a fairly

standard processor (4-core, 2.60 GHz processor with 32 GB RAM).
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Chapter 5

Simulating and visualizing results

Optical backbones are million dollar assets, with fiber comprising their most expensive

component. Companies like Google, Microsoft and Facebook purchase or lease fiber

to support wide-area connectivity between distant data center locations, and they

need to know how and when to purchase this fiber. The process of deciding which

fibers to buy and how to manage them is capacity planning. While TeaVaR is cast

as a TE scheme throughout this thesis, it can also be used for capacity planning.

In this chapter, I build out a simulation tool, called TE-VIS. The tool commu-

nicates with my implementation of TeaVaR, and simulates its usage in the data

plane. I explain how TE-VIS can not only be useful for debugging any TE scheme

but also for capacity planning. The simulation allows network operators to see how

their network is performing, where the bottlenecks are, and what kind of demand

loads it can handle. It is a user interface that allows a user to select various inputs to

a TE scheme and take the output of that scheme, in this case TeaVaR, and use it to

simulate traffic through any chosen network and any given failure scenario. TE-VIS

can be used as a first step to implementing TeaVaR in a Software-Defined Network

(SDN) or long-term capacity planning.
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Figure 5-1: An image showing TE-VIS when two nodes are selected. The tunnels
between the two nodes along with their weights are displayed on the top right, and
the dashed line is the current selected path.

5.1 Developing an API for the optimization

For TE-VIS to be up and running, it must be able to communicate with the optimizer

of TeaVaR. To do this, I turn TeaVaR into an API with a single endpoint that

takes as input, a a network topology, demand matrix, path selection algorithm, 𝛽

value, and scenario cutoff. I use the Julia HTTP package to accept HTTP requests

with proper headers, and the JSON package to decode these inputs in the JSON

data payload. The optimizer then runs, encodes its results, and send back a JSON

response.

5.2 Visualizing the output

To visualize the output, I need an interactive, fast, flexible data visualization library.

I build out the front-end using React [1] and use D3 [9] to display the network as

a 2D force-graph. Using a D3 force graph, I make the network interactive, and add

labels, click, and drag events accordingly. Most importantly, I make the force-graph

reactive to changes in the state of the overall application, so the user can manually

change the failure scenario, toggle link utilization labels, and select various nodes

to view more information about them. In addition, the front-end has a form with

inputs for the the optimization and makes HTTP requests to get the TE output. The
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Figure 5-2: This image shows the utilization on each link. Utilization is defined as the
amount of traffic divided by that links total capacity. The labels in red show where
congestion would occur and traffic would be dropped because of the link breaking
capacity.

output is then mapped onto the graph, and traffic is routed and re-routed according

to the application state using the routing mechanisms described earlier. This allows

a real-time look at utilization and node routing information. When a single node is

selected, incoming and outgoing traffic are displayed. When two nodes are selected,

the demand between them is displayed, and the paths and their weights can be cycled

through using the arrow keys. All paths from source to destination are highlighted,

and the current selected path is marked by a dashed line.

5.3 Applications to capacity planning

While TE-VIS was built to demonstrate and explain the results of TeaVaR, I think

it has promise as a general tool for capacity planning. From what I have seen, it

is often hard to compare various TE algorithms, and TE-VIS may give a realistic

visualization of how traffic would actually be routed and suggest the effect of failures

for any TE scheme. Figure 5-2 shows an image from TE-VIS with the amount of

traffic flowing on each link. We can see that one link in red is down because of

a failure. We can also see one link with its utilization number in red because it

is greater than 100%. This link would become congested and cause traffic loss in

this scenario. In this case, network operators could choose to augment this link’s
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capacity to avoid congestion there. With TE-VIS, it can easily be determined where

the bottleneck links are and how to avoid them with proper capacity planning. In

addition, users can manually increase the capacity on given links and see the response

in the network. They can also simulate high traffic hours or large data transfers and

view the immediate affects all across the network.
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Chapter 6

Contributions

The main contributions of this thesis is its introduction of a novel TE paradigm,

TeaVaR, to explicitly account for the likelihood of different failure events with the

goal of minimizing a formal notion of risk to a level deemed acceptable by network op-

erators. I design and evaluate this scheme with an optimization framework that allows

operators to optimize bandwidth assignment subject to meeting a desired availabil-

ity bar (e.g., providing 99.9% availability). I address algorithmic challenges related

to the tractability of risk minimization in this context, as well as operational chal-

lenges. I explore various objective goals of network operators, and apply TeaVaR

to real-world data from the inter-datacenter backbone of a large service provider in

North America. I find TeaVaR can support up to twice as much traffic as today’s

state-of-the-art TE schemes at the same level of availability. TeaVaR illustrates

the usefulness of adopting financial risk theory’s notion of Conditional Value at Risk

to network resource allocation challenges. The approach may find other important

applications in the networking domain.

Another important contribution is the visualization tool that was originally built

for TeaVaR, as it can be extended to any other TE or capacity planning scheme.

This tool is extremely useful for visualizing complex network simulations and various

network events. TeaVaR takes an important step in the development of failure-

aware TE schemes by modeling the reality of failures directly in the algorithm, and it

provides the real world bandwidth guarantees that network operators seek to achieve.
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Appendix A

Appendix

A.1 Calculating 𝑉 𝑎𝑅𝛽

Here, I describe a post-processing procedure to calculate the 𝑉 𝑎𝑅𝛽. Note that the

procedure is generic, and applicable to any setting with a discrete number of states

(recall that in the present case, each network state corresponds to a different com-

bination of links, switches, etc. that are up or are down). The procedure is the

following: fixing 𝑥, we sort the states in increasing order of their loss. With some

abuse of notations, we enumerate the states according to the sorted order; let the

corresponding state losses be ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓ𝐾 . Let 𝐾𝛽 be the unique index such

that Σ𝐾𝛽

𝑘=1𝑃𝑘 ≥ 𝛽 > Σ
𝐾𝛽−1

𝑘=1 𝑃𝑘, where 𝑃𝑘 is the probability of state 𝑘. Then the 𝑉 𝑎𝑅𝛽

is given by 𝑉𝛽(𝑥) = ℓ𝐾𝛽
. See Proposition 8 in [36] for a proof.

Computing 𝑉 𝑎𝑅𝛽 in the rare case when 𝑉𝛽(𝑥
*) < 𝛼* (see Theorem 1). We get

this inequality when Σ
𝐾𝛽

𝑘=1𝑃𝑘 = 𝛽. This is unlikely to occur because the probabilities

correspond to empirical measures of up and down time (hence, the numbers often

have several decimal positions more than 𝛽). But even if this case occurs, we have

𝑉𝛽(𝑥) = ℓ𝐾𝛽
as described above.

Determining the 𝑉 𝑎𝑅𝛽 for individual user SLAs. Unlike the current formula-

tion, the per-user SLA (allowed demand and the corresponding probabilistic guaran-

tee) is not explicitly obtained as output of the optimization framework. In such cases,

we apply the above procedure on each individual user as follows. The key observation
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is that the tunnel allocation per user is given from the optimization. We also know

the demand 𝑑𝑓 . For each user 𝑓 , we first reduce the dimension of the state-space to

include events that correspond only to links, switches, etc., which belong to one or

more of its routs. We sort the states and obtain the 𝑉 𝑎𝑅𝛽 as described above; by

using this procedure, the network provider can actually give different probabilistic

guarantees for different users, e.g., by fixing a different 𝛽 for each user.

A.2 Proof of theorem 2

Since the theorem’s guarantee is with probability greater than or equal to 𝛽, by

definition of 𝑉 𝑎𝑅𝛽, we may restrict our attention to failure states whose loss is less

than or equal to 𝑉𝛽(𝑎*). Consider any such state; let 𝑇𝑓 ⊆ 𝑇𝑓 be the subset of 𝑓 ’s

tunnels that are available in that state. Since 𝑉𝛽(𝑎*) is an upper bound for each loss

scenario up to the 𝛽 percentile, it follows from the definition of the loss function (3.2)

that

Σ𝑡∈𝑇𝑓
𝑎*𝑓,𝑡 ≥

(︀
1− 𝑉𝛽(𝑎*)

)︀
𝑑𝑓 .

Using this inequality together with the proportional assignment rule, we obtain that

each active tunnel 𝑟 ∈ 𝑅𝑖 carries flow 𝑓𝑟, satisfying

𝑓𝑟 =
𝑤𝑓,𝑡

Σ𝑡′∈𝑇𝑓
𝑤′

𝑓,𝑡

𝑏𝑓 (A.1)

=
𝑎*𝑓,𝑡

Σ𝑡′∈𝑇𝑓
𝑎*𝑓,𝑡′

(︀
1− 𝑉𝛽(𝑎*)

)︀
𝑑𝑓 (A.2)

≤
𝑎*𝑓,𝑡(︀

1− 𝑉𝛽(𝑎*)𝑑𝑓 )
(︀
1− 𝑉𝛽(𝑎*)

)︀
𝑑𝑓 = 𝑎*𝑓,𝑡. (A.3)

The theorem then follows immediately by recalling that each feasible solution satisfies

the capacity constraint (3.1).

54



Bibliography

[1] Todd Abel. ReactJS: Become a Professional in Web App Development. CreateS-
pace Independent Publishing Platform, USA, 2016.

[2] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for
traffic engineering in sdn-openflow networks. Comput. Netw., 71:1–30, October
2014.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong
Pan, Navindra Yadav, and George Varghese. Conga: Distributed congestion-
aware load balancing for datacenters. SIGCOMM Comput. Commun. Rev.,
44(4):503–514, August 2014.

[4] Fredrik Andersson, Helmut Mausser, Dan Rosen, and Stanislav Uryasev. Credit
risk optimization with conditional value-at-risk criterion. Mathematical Program-
ming, 89(2):273–291, 2001.

[5] Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill, Bikash Koley, Christoph
Albrecht, Emilie Danna, Joe Jiang, and Xiaoxue Zhao. Capacity planning for the
google backbone network. In ISMP 2015 (International Symposium on Mathe-
matical Programming), 2015.

[6] Cynthia Barnhart, Niranjan Krishnan, and Pamela H. Vance. Multicommodity
flow problems. In Encyclopedia of Optimization, pages 2354–2362. Springer, 2009.

[7] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE:
Fine grained traffic engineering for data centers. In Proceedings of the Sev-
enth COnference on emerging Networking EXperiments and Technologies, page 8.
ACM, 2011.

[8] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A
fast dynamic language for technical computing. CoRR, abs/1209.5145, 2012.

[9] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, December 2011.

[10] Antonio J Conejo, Miguel Carrión, Juan M Morales, et al. Decision making
under uncertainty in electricity markets, volume 1. Springer, 2010.

55



[11] E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing the max-
min fairness and throughput objectives in traffic engineering. In 2012 Proceedings
IEEE INFOCOM, pages 846–854, March 2012.

[12] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional ip
routing protocols. IEEE Communications Magazine, 40(10):118–124, Oct 2002.

[13] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing
ospf weights. In INFOCOM 2000. Nineteenth annual joint conference of the
IEEE computer and communications societies. Proceedings. IEEE, volume 2,
pages 519–528. IEEE, 2000.

[14] Monia Ghobadi and Ratul Mahajan. Optical layer failures in a large backbone.
In Proceedings of the 2016 ACM on Internet Measurement Conference, pages
461–467. ACM, 2016.

[15] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vah-
dat. Evolve or die: High-availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, pages 58–72, New York, NY, USA, 2016. ACM.

[16] Zonghao Gu, Edward Rothberg, and Robert Bixby. Gurobi Optimizer Reference
Manual, Version 5.0. Gurobi Optimization Inc., Houston, USA, 2012.

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-
driven WAN. In ACM SIGCOMM 2013 Conference, SIGCOMM’13, Hong Kong,
China, August 12-16, 2013, pages 15–26, 2013.

[18] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Al-
imi, Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari,
Matt Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. B4
and after: Managing hierarchy, partitioning, and asymmetry for availability and
scale in google’s software-defined wan. SIGCOMM ’18, pages 74–87, 2018.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-
deployed software defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3–14,
August 2013.

[20] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai
Menache. Dynamic pricing and traffic engineering for timely inter-datacenter
transfers. In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Con-
ference, pages 73–86. ACM, 2016.

56



[21] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang. Cooperative
content distribution and traffic engineering in an isp network. In ACM SIGMET-
RICS Performance Evaluation Review, volume 37, pages 239–250. ACM, 2009.

[22] P. Jorion. Value at Risk: The New Benchmark for Managing Financial Risk.
MacGraw-Hill international editions: Finance series. McGraw-Hill, 2001.

[23] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
tightrope: Responsive yet stable traffic engineering. In ACM SIGCOMM Com-
puter Communication Review, volume 35, pages 253–264. ACM, 2005.

[24] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj Babbula.
Calendaring for wide area networks. In Fabián E. Bustamante, Y. Charlie Hu,
Arvind Krishnamurthy, and Sylvia Ratnasamy, editors, ACM SIGCOMM 2014
Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages 515–
526. ACM, 2014.

[25] F. A. Kuipers. An overview of algorithms for network survivability. CN,
2012:24:24–24:24, January 2012.

[26] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinadhuni, Enrique Cauich Zer-
meno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-Stavila, Math-
ieu Robin, Aspi Siganporia, Stephen Stuart, and Amin Vahdat. Bwe: Flexible,
hierarchical bandwidth allocation for wan distributed computing. In Sigcomm
’15, 2015.

[27] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr
Lapukhov, Chiun Lin Lim, and Robert Soulé. Semi-oblivious traffic engineering:
The road not taken. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 157–170, Renton, WA, 2018. USENIX
Association.

[28] Youngseok Lee, Yongho Seok, Yanghee Choi, and Changhoon Kim. A constrained
multipath traffic engineering scheme for MPLS networks. In ICC, pages 2431–
2436. IEEE, 2002.

[29] George Leopold. Building Express Backbone: Facebook’s new long-haul network.
http://code.facebook.com/posts/1782709872057497/, 2017.

[30] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and
David Gelernter. Traffic engineering with forward fault correction. In ACM
SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22,
2014, pages 527–538, 2014.

[31] Houra Mahmoudzadeh. Robust Optimization Methods for Breast Cancer Radia-
tion Therapy. PhD thesis, University of Toronto, 11 2015.

57



[32] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah, Y. Ganjali,
and C. Diot. Characterization of failures in an operational ip backbone network.
IEEE/ACM Transactions on Networking, 16(4):749–762, Aug 2008.

[33] Jeffrey C Mogul, Rebecca Isaacs, and Brent Welch. Thinking about availability
in large service infrastructures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, pages 12–17. ACM, 2017.

[34] Dritan Nace and Michal Pióro. Max-min fairness and its applications to routing
and load-balancing in communication networks: A tutorial. IEEE Communica-
tions Surveys and Tutorials, 10(1-4):5–17, 2008.

[35] R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-
at-risk. Journal of risk, 2:21–42, 2000.

[36] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general
loss distributions. Journal of banking & finance, 26(7):1443–1471, 2002.

[37] Farhad Shahrokhi and David W. Matula. The maximum concurrent flow prob-
lem. J. ACM, 37:318–334, 1990.

[38] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer
Rexford. Network architecture for joint failure recovery and traffic engineer-
ing. Proceedings of the ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, 2011.

[39] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haibing
Guan, and Ming Zhang. Guaranteeing deadlines for inter-data center transfers.
IEEE/ACM Transactions on Networking (TON), 25(1):579–595, 2017.

58


