FLEXNET: A Reconfigurable Network in the WAN

Jeremy Bogle and Tim Kralj
May 15th, 2019

Abstract

Fiber optic cables connecting data centers are an
expensive resource acquired by large organizations that
require significant monetary investment and oversight.
Their importance has driven a conservative deployment
approach with redundancy and reliability taken into ac-
count. Over-provisioning these networks to account for
potential spikes in demand is a common practice. In this
work, we take a more aggressive approach and argue for
instead dynamically changing the capacity of fiber optic
links based on the capacity requirements of the network
and the current demands. We propose FLEXNET, a
traffic engineering system that allows optical links to
adapt their capacity based on the observed demands on
the network to achieve higher throughput. Each node in
the network can allocate its given total capacity, or node
pool, across its outgoing links in an optimal fashion.
We evaluate FLEXNET using real world networks to
see potential network improvements, evaluate speed,
and compare to existing approaches. Our results show a
dynamic network like FLEXNET can outperform state-
of-the-art algorithms for networking used today.

1. INTRODUCTION

Internet users are consistently demanding higher
speeds as many services and applications are being run
in datacenters hosted by cloud providers. Today, fiber
optic cables are being used to get these blazing fast
internet speeds; however, all the network infrastructure
is currently static. These cables are very expensive to
build and maintain and therefore should be used to
their maximum efficiency in order to reduce costs. We

plan to explore a novel way to reduce the costs of

the in the optical topology of the WAN while increas-
ing efficiency without laying new fiber. Flexible-grid
capable ROADM (Re-configurable Optical Add-Drop
Multiplexers) are considered one of the most significant
advances in Dense Wavelength Division Multiplexing
(DWDM) systems technology over the last decade.
ROADMs have the ability to redirect wavelengths from
an input port to any output port, enabling the net-
work operator to program the allocation of wavelengths
across connected fibers. In theory, a software defined
network could have a centralized controller that pro-
grams the ROADMs to change its wavelengths in an
optimal way thus effectively adjusting the capacity on
different fibers — we will define capacity to be the
maximum traffic a fiber can carry, which is a function of
the number wavelengths being sent along that fiber. In
traffic engineering (TE), previous approaches attempt
to find optimal routing strategies that maximize flow
using the well know max-flow optimization and various
other schemes. All these schemes are constrained by
the capacity on each link, and the static topology of
the network. We plan to devise a routing algorithm
that is aware of a re-configurable network and can
reroute traffic and change capacity on each link. Initial
studies in this field have assumed that a re-configurable
network could create a fiber link between two switches
when there wasnt one before [1]. We plan to consider
a real topology where the constraints do not allow for
the creation of links, but instead allow for changing
capacities to O (essentially just an empty link) and
then dynamically expanding them when needed. This
provides a realistic framework for implementing a TE
scheme into a network with ROADMs at each node.
In order to evaluate how such a system would work

in practice, we will also need to consider cost of re-
configuration. We propose our system, FLEXNET, that
casts this idea of a network with dynamic capacities as
a Linear Program (LP). In section 4, we run a series
of evaluations on real topologies, and evaluate possible

cost models.

2. Motivation

Today’s WAN networks are often considered static
entities. The capacities on each link, defines as in the
amount of traffic a link can carry, is currently bounded
by the number of wavelengths that propagate through
a given fiber. These capacities are static, and rarely
changed. When these links are adjusted, it requires
a large amount of time and money to increase their
capacities. In this paper, we imagine a solution where
a network can be built such that its capacities are
dynamic, and can be adjusted to incoming demands.
To do this, we must consider node has a re config-
urable multiplexer, (ROADM) that can take its incoming
wavelengths, and direct them along any of its out-going
edges. Therefore, the capacities on all links are actually
a function of the wavelengths, or total capacity that can
be sent from the outgoing node of that edge. We call
this total capacity the node pool. This pool can then
be allocated on the outgoing edges from each node in
whatever way is most optimal. We see this manifest
itself later as decision variables in the Linear Program
we call FLEXNET.

Problem. Imagining a small network of 4 nodes, we
can illustrate this problem and how our solution would
work. If we take a look at Figure 1, we see an example
where these node pools can be maintained and the
total throughput can be increased by re-configuring the
link capacities. In the example, there are four nodes
and 8 uni-directional edges that can carry traffic in
between nodes. Node 1 is trying to send traffic to node
4. In the example we only provide capacities for the
4 edges that matter. Originally, node 1 can only send
2 units along the upper path and 3 along the lower
path for a total admissible traffic of 5 units. In a re-
configurable network like FLEXNET, edge (1,3) can

borrow a unit of capacity from the edge (1,2) and

2 2

3 4

Figure 1: Here we show an example of a capacity con-
strained network demanding 6 units of traffic from node
1 to node 4. We see the highest possible throughput is
carrying 2 on the upper path and 3 on the lower path.
However, on the right, we show what a re-configurable
network could do. If node 1 has a pool of 6, it could
allocate 2 on the upper edge and 4 on its lower edge,
allowing the network to carry 2 units of traffic on the
upper path and 4 on the lower path for a total throughput

of 6 units.

maintains the pool on node 1 (6 units). This small
change allows for a throughput increase from 5 to 6.
To achieve results like this, we present our optimization
framework, FLEXNET. Then, in section 4 we run a
series of experiments comparing FLEXNET to existing
TE algorithms on larger networks.

3. Optimization Framework

We now describe the FLEXNET optimization
framework in detail. We first formalize the model and
delineate the goals of WAN TE [2], [3], [4], [5] (§3.1).
Then, we introduce FLEXNET’s novel approach to TE,
showing that it enables finding optimal reconfigurations

of network capacities.

3.1. WAN TE

Input. Like other WAN TE studies, we model the WAN
as a directed graph G = (V, E), where the vertex set
V' represents switches and edge set E represents links
between switches. Link capacities are usually given by
C=(c,.-
as in any TE formulation, the total flow on each link

.,¢|g|) (e.g., in bytes per second, bps) and

should not exceed its capacity. However, in FLEXNET,

these link capacities are no longer inputs. Instead, we

2.0 2.0

24 0.13 1.7724

21 <—>
3.0 -0 5.95 26
2.0 1.8
3.0 1.2
403 & 5.95%y &

4.0 %0 .68 Q.03
4.0 5.0 3.34 s
1230 5013 12 565 5.0 (18
30 5% 1.0 xs 3/ 5
2
0 0.72
0 11.0 \.37 .37
3.0 1.48
4 «<—>
3.0

2
28 4 «—>28
0.76

(A) (B)

Figure 2: This figure shows the reconfiguration output
from our linear program. (A) shows the original capaci-
ties for a subsection of one of our topologies. (B) shows
the same graph with optimal capacities for one demand
matrix while adhering to the node pools.

take node pool as an input represented as p, where
Pn = ec g, Ce and E, represents the set of outgoing
edges for node n. TE decisions are made at fixed time
intervals (say, every 5 minutes [3]), based on the esti-
mated user traffic demands for that interval. In each time
epoch, there is a set of source-destination switch-pairs
(“commodities” or “flows”), where each such pair f is
associated with a demand d, and a fixed set of paths (or
“tunnels”) Ty € T on which its traffic should be routed.
FLEXNET assumes the tunnels are part of the input.
In section 4, we use a generic tunnel selection scheme
(e.g., k-shortest paths). We also experiment with edge-
disjoint paths and varying k. In reality, any preferred
path selection scheme, potentially one that takes latency,
or distance into account could be used instead.
Output. The output of TE schemes often results in the
bandwidth granted for each flow, and a specification
for how traffic should be split across its tunnels. The
output of FLEXNET, consists of two parts: (1) the
specification for splitting traffic for each flow f, across
its tunnels 7Ty, and (2) the fotal capacity c. for each
edge e.

Optimization goal. Previous studies of TE considered
optimization goals such as maximizing total concur-
rent flow [3], [6], [5], max-min fairness [7], [2], [8],
minimizing link over-utilization [4], minimizing hop
count [9], and accounting for hierarchical bandwidth

allocations [10]. As formalized below, an appropriate

choice for our context is selecting the wy ;’s (per-tunnel
bandwidth weights) in a manner that maximizes the the
sum of all flows. This choice of objective will enable
us to maximize network throughput, but will not allow
for fairness across flows. In §3.4 we discuss ways to
extend our framework to other optimization objectives

that achieve better fairness.

3.2. Linear Program

With FLEXNET, we use all the same inputs from
regular WAN TE algorithm, except we do not take
capacities as an input. Instead, we take node pool as
input represented as p,,. Then, as output, we return our
decision variables ¢, and wy;. Outlined in the table
below, we have represented these variables in a linear
program. We represent the objective as a maximization
function where we simply maximize throughput, or total
satisfied demand. We discuss different objective func-
tions that achieve better fairness in section 3.4. We solve
this objective function subject to 3 constraints. The
first of these constrains states that all overlapping flows
on a given edge must not exceed the capacity of that
edge. We cannot have this because the hardware cannot
exceed that threshold. To assure this, we multiply the
weight of a given flows tunnels (wy ;) by its demanded
traffic (d¢), and by a binary variable (L;.). We use
the binary variable to test if a tunnel ¢ uses edge e so
we do not count tunnels that are unused. Unlike other
TE scheme, in this first constraint, the capacity on each
edge will be a decision variable in the formulation and
be determined by the other constraints as well instead
of an input. This is because we have the ability to
adjust our capacities that are going through each tunnel
in each edge. In other two constraints, we guarantee
that outgoing and incoming capacities do not exceed the
total pool for that node. The first of these two constrains
is incoming flows and the second constrains outgoing
flows. We discuss the choice to use weights as an input,
wy, and how it translates to a granted bandwidth for
each flow by in the next section. Figure 2 shows an
example optimal capacity output from a subsection of

one of our graphs.

G(N, E) | Network graph with switches N and links FE.
pn € P | The pool that node n can allocate to its incoming
Input and outgoing edges.
dy € D | The bandwidth demand of flow f.
Ty €T | Set of tunnels for flow f.
Ly 1 if tunnel ¢ uses edge e, O otherwise.
Auxiliary Zn e 1 if edge e is an outgoing edge of node n, 0 otherwise.
variables ' . .) . .
Xone 1 if edge e is an incoming edge of node n, 0 otherwise.
Ce The capacity on each edge; ¢, > 0
Output Wyt The weight of traffic for flow f on tunnel ¢ € T%;
0<wy;, <1
maximize Z wydy
fEFLETy
s.t Z wedily e <c. Ve€ K
fEFETy
Z CeZne < Pn Vn e N
ecl
Z CeXne < Dn Vn e N

ecE

3.3. Routing with FLEXNET

A common practice in today’s TE schemes is to
output a granted bandwidth per flow and more specif-
ically an allocation for each flow on each tunnel [5],
[2]. In certain schemes they use weights [4] instead
of exact allocations. When actually routing traffic, a
weight assignment rule must be used where each tunnel
is allocated a proportional amount of bandwidth on
its available tunnels. For schemes that give allocations
in bps, ay,;, weights can be given as wy,;, where
Wy = #fta” However, in FLEXNET, we instead
use the weights, wy; explicitly in the optimization so
that they are optimized as outputs. This allows for ease
of use when routing as this proportional assignment
is not necessary. We also allow for the weights to
sum to less than 1, so ZteTf wy, < 1 which allows
for natural bandwidth limitation by the formulation.
Therefore the granted bandwidth for a flow by can be
computed simply as multiplying this sum of weights by

the original demand for that flow, by = >, cp wy,edy.
Finally, in the event of failures, weights can be split
among surviving tunnels proportionally. During failures,
when Ty C T} is the subset of f’s tunnels that are still

available, each tunnel ¢ € T’ 'r can be reassigned a weight

Wt

as wy < s~—>—— to route around the failure.
’ Zteff Wit

3.4. Achieving Fairness Across Flows

As we mentioned in the previous section, the formu-
lation presented in section 3.2 doesn’t have any notion
of fairness and only tries to maximize total bandwidth.
In this section we describe an approach for achieving
max-min fairness, where we maximize the minimum
bandwidth achieved across all flows.

To do this we would like to apply an objective

maximizes the function

F(w) = min Z wydy @)
teTy

While this objective function is nonlinear, we are
able to transform this into a linear objective by applying
an additional constraint. We represent this objective as
a constraint where b,,;, is the minimum bandwidth
among all flows

teTs
Then with this constraint, we can simply maximize

bmin which will be the minimum by of all flows.

3.5. Path Selection

We use the k-shortest path algorithm to find
the paths between source and destination nodes in
FLEXNET. This algorithm, also known as Yen’s al-
gorithm [11] uses an iterative approach to Dijkstra’s
and returns only the k shortest (or less if that many do
not exist). This gives us the benefit of not having to
use excess amounts of compute power to find all the
paths—an unscaleable solution for very large graphs.
In addition, we do not want to have too many long
paths between our nodes being used since there is a
correlation between path length and latency. We want to
maintain fast speeds for users of the network so latency
is important. The parameter k is user definable to fit
the specific instance of the system you are using with
FLEXNET. We talk more about runtimes of different
k’s in 4.4. In addition, since path selection is completely
agnostic to the formulation, any preferred path selection
scheme that may take into account latency, or distance
or another goal could be used instead.

3.6. Cost Model

Currently, the cost for reconfiguration is not repre-
sented in this formulation. This means that, if a setup, or
configuration of capacities exists that is more optimal,
then the formulation will find it. While this makes it
most optimal in theory, it is not realistic with actual
hardware as there could be costs associated with chang-
ing the network capacities (i.e dropping traffic, energy
consumption, and hardware malfunctions). Because of
this, we must think about how different configuration

speeds could affect the results, and how we can quantify

the cost of re-configuring this network. This would
allow us to see the trade offs that would exist between
a static network and a dynamic one, and at what point
the dynamic hardware becomes useful. In section 4.5
we discuss different cost models in depth and how one
can determine whether or not it is beneficial to switch

to the optimal configuration.

3.7. Implementation

We implement the linear program from this section
in Julia using the JuMP framework. We are able to
successfully represent the example in Figure 1 and see
the optimizer choose to reallocate the node pool on node
1 to allow for the 6 units of traffic to flow. In section
4, we run a series of experiments on larger networks to
prove the effectiveness of FLEXNET.

4. Evaluations

In this section we present the results from our
evaluations of FLEXNET. We compare FLEXNET to
state of the art TE schemes and show how it can out-
perform these approaches under high traffic situations.
Other approaches are constrained to using the static
capacity of the network while FLEXNET can adjust or
reconfigure capacities according to the current demand,
while still adhering to the same node pool. We also
provide analysis for cost of reconfiguration and how
that would affect effectiveness of FLEXNET.

4.1. Experimental setting

Topologies. We evaluate FLEXNET on four network
topologies: B4, IBM, ATT, and X-Net. The first three
topologies (and their traffic matrices) were obtained
from the authors of SMORE [12]. X-Net is the network
topology of a large cloud provider in North America.
See Table 1 for a specification of network sizes. Our
empirical data from the X-Net network consists of the
following: the capacity of all links (in Gbps), the traffic
matrices (source, destination, amount of data in Mbps)
over four months at a resolution of one sample per hour.
For the ATT, B4, and IBM topologies we obtained a set

Topology Name | #Nodes | #Edges
B4 12 38
IBM 18 48
ATT 25 112
X-Net ~ 30 ~ 100

TABLE 1: Network topologies used in the evaluations.
For confidentiality reasons, we do not report exact
numbers for the X-Net topology.

of at least 24 demand matrices and link capacities. For
the sake of FLEXNET, we look at the total capacities
on each outgoing edge of a given node set this as the
node pool for that node.

4.2. Satisfied Demand Across All Topologies

Our first experiments seeks to show total satisfied

demand by different TE schemes on multiple topologies
and many demand matrices.
Setup. We begin by loading in all four topologies
listed above. We iterate over these topologies and
compute the sum of allowed demand for each flow
as > reper, Whtds. Then we divide by the total
requested demand,) ... dy and report this as the
satisfied demand for this flow. For each point, we aver-
age the satisfied demands across 10 demand matrices.
Demand is scaled up for each topology to a scale where
FLEXNET can achieve 99% satisfaction. This allows us
to normalize results across topologies. The results are
shown in Figure 3 based on the demand satisfied for
each topology and different TE schemes.

From this experiment, we see that FLEXNET out-
performs other schemes, especially with larger net-
works like X-Net and ATT. ECMP, or Equal-Cost-
MultiPath [13], simply splits weights equally across all
tunnels. This approach has no notion of capacity and
must drop traffic if it breaks the capacity on a given link.
FFC [5], is a more recent approach that takes into ac-
count failures and optimizes total bandwidth. However,
FFC;, limits bandwidth to ensure total satisfaction up
to k-failures. So we see that with these networks FFC,
must severely limit bandwidth to be robust up to 2 con-
current failures anywhere in the network. FLEXNET,

on the other hand, can reconfigure the capacities on the

FLEXNET m— ECMP FFC, FFCy

100

80

60

40

20

Satisfied Demand (%)

0

B4 IBM XNet ATT

Figure 3: In this experiment, we show the results of
satisfied demand as a percentage of total demand across
4 different topologies. Demand is scaled up for each
topology until FLEXNET can achieve 99% satisfaction
to provide normalization across topologies. We see that
FLEXNET consistently outperforms other schemes.

links according to the node pools at each node to be
most optimal for the current demand in the network.
FLEXNET achieves higher satisfied demand across all
topologies and demand matrices.

4.3. Scaling Demands

Networks are often significantly over-provisioned,
and thus under-utilized, in order to handle unexpected
shifts in traffic. In this experiment, we put the network
in a constrained state and by scaling demand up and

examine its performance.

Setup. For this experiment, we run FLEXNET with
many demand matrices and for each one, we com-
pute satisfied demand using the same procedure in
the previous experiment. Initially, we scale demand up
beforehand by applying a multiplicative factor to all
flows, and then from there slowly increase the scale and
plot the satisfied demand on the y-axis. For each point,
we average the satisfied demands across 10 demand
matrices.

From looking at the results in Figure 4, we can
see that FLEXNET outperforms other approaches. The
biggest contributing factor for this is that FLEXNET
is able to reconfigure capacities while other approaches
are limited by the existing capacity configuration on the
links.

100
920
80
70
60
50

Satsified Demand (%)

1 2 3 45 6 7 8 910
Demand Scale

Figure 4: This figure shows the percentage of satisfied
demand as demand is scaled up. We see that with
FLEXNET we can achieve more satisfied demand at
higher scales. This is because FLEXNET is able to
configure capacities accordingly where as other ap-
proaches like ECMP or FFC are constrained by the
static capacities of the network. We also scaled demand
initially to put the network in a constrained state so
scale 1.0 actually corresponds to 3x demand. Results
are averaged over 10 demand matrices and one topol-
ogy. FFFCs was not shown here because it achieves
significantly lower satisfied demand.

4.4. Speed Analysis

To perform runtime analysis on the scalability of
FLEXNET, we ran experiments with our implemen-
tation and different path selection mechanisms. The
results are shown in figure 3.5. To test how the runtimes
changed with different values of k& and an increasing
number of edges, we run this experiment with values
of k£ of 3, 5, 10, and 20. We do average this across
10 different demand matrices. We only use FLEXNET
in this experiment to illustrate how the algorithm per-
forms in an increasing load. This is used to assess if
FLEXNET can scale to larger graphs with ease.

As we can see in 4, we see an increase in runtime
as the number of edges increase. In addition, as the
value of k increases, we see that the runtimes increase.
Here we can see the tradeoff of increasing your search
space vs the runtime of the algorithm. On the on hand,
one may not want to search the whole space for speed
but also may want to give each flow more options for
splitting its traffic. This also shows that our formulation
runs in about 100 milliseconds, with as many as 20

paths per flow on large networks.

k=3 k=5 k=10 k=20
0.08
m
2 o006
o
o]
& o004 .
g o002 -
=
O 1 1
0 30 60 90 120
Edges

Figure 5: This figure shows how FLEXNET scales with
increasing the number of edges with respect to the value
of k£ (in k-shortest neighbors) used in the search. The
increase in runtime comes from the increase of search
space from both the number of edges in the graph and
the value of k. The times increase at a linear rate with
respect to edges as they increase for each individual &

value.

4.5. Cost Tradeoff Analysis

In our previous experiments, we have assumed that
you can reconfigure a network instantly, with 0 cost. Po-
tential costs for reconfiguration include network down-
time, energy consumption, and hardware malfunctions.
Prior work has been done to show how to include a cost
into linear programs with maximization objectives [14].
We provide some analysis of how FLEXNET would
be affected in the worst case, where reconfiguration
results in entire network outage until reconfiguration
has finished. We show that there eventually is a break
even point where it might still be beneficial to switch
to the new reconfiguration. Here, reconfiguration time
is assumed to be a variable. Other work has shown that
reconfiguration can take on the order of tens of hundreds
of milliseconds [15].

Considering cost is important for systems designers
to consider when implementing FLEXNET. There are
multiple ways that reconfiguration can be done in the
network. We show this in Figure 6 and Figure 7. In
both of these figures, we begin with an initial network
configuration, and initial demand dy. At time d; we
receive the next incoming demand matrix and must
decide whether to reconfigure. The first of these shows
how a short but total network outage would effect

satisfied demand. This figure represents the worst case

< 100 [‘
T 80 e e
c |
© i
g 60 : -
a |
S 40t | .
QL 1
= 20+ : 8
b} :
©

O 1 1 1
@ do ds b

Time

Figure 6: A sample graph showing the satisfied demand
over time during a reconfiguration. The demand d;
causes FLEXNET to perform a configuration switch in
the hardware. The drop in satisfied demand happens for
a short time, but it goes to 0% satisfied. At time b, the
drop in satisfied demand during reconfiguration hits a
break-even point. After time ¢ > b, the total satisfied
demand is greater than it would have been without
reconfiguring.

- no traffic can be satisfied during reconfiguration. We
see that there is 0 demand met for a period of time once
the demand is analyzed at point d; for the total time
it takes to reconfigure all switches at once. After this
point, however, the network is back up and has been
reconfigured to be more optimal for d; and can there-
fore satisfy a higher percentage of traffic. Eventually it
comes to a break-even point b where the demand loss
of configuration is balanced out. For all time ¢ > b we
have satisfied more demand than we would have had
we not switched configurations.

Similarly, in Figure 7, we start with an initial
demand dp and initial configuration and receive the
next incoming demand at time d;. The drop in satis-
fied demand is less than the previous figure but for a
longer time. This represents a switching scheme where
hardware switches sequentially in different parts of the
network to allow some continual traffic through the
network at all times during reconfiguration. When we
receive the new demand d;, We decide to change the
hardware, and after a longer period of time than Figure
6, we see the new configuration is complete. In both of
these cases, we still achieve the same break-even point
in the system at time b. Similarly, for all time when
t > b, demand satisfied is higher and we determine

that it was worth switching to the new configuration.

100 ‘

80 —— o]
60 :
w0} .
20 -

Satsified Demand (%)

Time
Figure 7: A graph that shows the demand satisfied
over time during a different reconfiguration scheme than
Figure 6 for FLEXNET. This case has the demand drop
to a smaller percentage (50% instead of 0%) but this
drop lasts for a longer time. The breakpoint for the
drop in satisfied demand is at time b. Similar to Figure
6, after time t > b, the total satisfied demand it greater
than it would have been with the original configuration

from time d.

These two examples show how cost can play a role
in configuration and have different schemes to achieve
the needs of the specific system — an important note
mentioned above is these machines have been shown to
achieve reconfiguration in the order of tens of hundreds
of milliseconds [15]; therefore, the second strategy
employed in Figure 7 would likely be superior. The
shift is still very fast, but the system would have a
much smaller drop in satisfied demand. We can also
imagine more complex switching schemes that can do
some configurations in paralell and other sequentially,
to maximize satisfied demand throughout the entire
switching process. For all of these cost models, when
actually using FLEXNET, we would have to do these
post processing calculations to decide whether it was
worth switching configurations or not. In the future,
we plan to model this cost in the optimization so that
the optimization can tell us whether the configuration
outweighs the costs, or if there is a middle-ground such
that some but not all reconfiguration steps can be made

to minimize cost and maximize satisfied demand.

5. Contributions

On this project we have had even contributions

from both Jeremy and Tim. We met and discussed

previous work in this field with Prof. Manya Ghobadi
to help us understand the hardware involved, and begin
to formulate a linear program. Together, we designed,
implemented, and tested our optimization in Julia. We
setup a github shared repo to work together on this
project. We also both contributed to this paper and
presentation.

6. Moving Forward

In this section, we provide background for both
traffic engineering in general, and more specifically a
few bodies of work that explore re configurable net-
works. We also describe in detail the future ideas and
challenges encountered in the creation of FLEXNET.

6.1. Related Work

WAN traffic management. Optimizing WAN backbone
traffic is a well-researched challenge. Most studies focus
on optimizing bandwidth allocation with recent inter-
est in centralized TE for WANs driven by software-
defined approaches for running and optimizing net-
works at scale (such as SWAN [3], B4 [2], FFC [5],
and BWE [10]). These schemes exploit a global view
of the network and perform global updates to configure
flow allocations.

Reconfigurable networks. Some recent work has been
done leveraging re-configurable optical devices like
ROADMs [16], [17] that would be used by FLEXNET.
A recent paper called RADWAN [14] presents a similar
idea where a SDN can be reconfigurable, but focuses
on increasing certain capacities on links by a certain
amount, instead of maintaining a given node pool. An-
other recent idea which provided some inspiration for
this work explores dynamic networks more generally
and discusses data structures that could be used to
represent a dynamic network and makes a case for
using dynamic networks in WANSs [1]. Lastly, Jin et
al. presented work that shows how networks could be
changed on larger timescales to be used for bulk data
transfers [16], but not specifically for TE. This work
also provides a lot of ideas for reconfiguration costs,

and scheduling updates during reconfiguration.

6.2. Challenges and Future Work

Edge directionality. One
FLEXNET is the issue of how to represent the graph
network. In most previous representations, the graph

major challenge for

has nodes and is connected by an edge to represent a
link and these links have constant capacity. In addition,
links are often represented as bidirectional. However,
we are try to make a routing scheme that is able to
change the amount the capacity a node can send and
receive. Because of this, we decided to make our graph
have two uni-directional links between each node. This
gives us multiple benefits. Mainly, it allows FLEXNET
to make constraints separate for the inputs of a node
(how much each router in our network receives) and
the outputs for each node (how much each router
can send). Another benefit from this representation is
that is it allows the system to have routers that are
able to accept and receive different amounts of data.
Currently, most fiber capacities are bidirectional, but
our model has the ability to assign different capacities
on different directions of a single fiber.

Scalability. We think that moving forward, a challenge
FLEXNET may face is scalability. As networks get
larger, we believe the number of constraints will grow
dramatically and we want to ensure our linear program
is still solveable in an efficient manner. We use matrices
L, Z, and X to provide O(1) look-ups for edges in
each tunnel, and incoming and out-going edges for
each node. The networks we tested with only increase
to about 120 edges, but ROADM networks are rarely
orders of magnitude larger. Because of this, FLEXNET
should easily scale to these types of networks.

Cost of reconfiguration. Our formula works under
the assumption that cost of reconfiguration is 0 and
the network can reconfigure instantaneously with some
hypothesis on the time it should take to reconfigure
a ROADM chip. In the future, we want to test with
hardware to get a sense of the order of time it takes
to change. If the time to change a physical network is
shown to be in the hundreds of milliseconds, FLEXNET
provides a lot of opportunity to implement a dynamic
network configuration. After testing on hardware, we
could update our linear program to more accurately

consider the cost of reconfiguration.

7. Conclusion

In this paper we present FLEXNET, a novel way
for WAN networks to use ROADMS (Re-configurable
Optical Add-Drop Multiplexers) in a reconfigurable sys-
tem. We show how networks can be self-adjusting to
better serve users by satisfying a greater demand than
previous algorithms such as ECMP, FFC-1, and FFC-2.
The hardware that enables FLEXNET is still not widely
used, but it can greatly benefit network providers. Our
main contributions are the linear program for network

reconfigurations and evaluation on real world data sets.

References

Chen Avin and Stefan Schmid.
networking: A theory for self-adjusting networks.
abs/1807.02935, 2018.

Toward demand-aware
COoRR,

(1]

[2] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Jun-
lan Zhou, Min Zhu, Jon Zolla, Urs Holzle, Stephen Stuart, and
Amin Vahdat. B4: Experience with a globally-deployed software
defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3-14,

August 2013.

[3] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving
high utilization with software-driven WAN. In ACM SIGCOMM
2013 Conference, SIGCOMM’13, Hong Kong, China, August

12-16, 2013, pages 15-26, 2013.

[4] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert
Kleinberg, Petr Lapukhov, Chiun Lin Lim, and Robert Soulé.
Semi-oblivious traffic engineering: The road not taken.
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 157-170, Renton, WA, 2018.

USENIX Association.

In

[5S] Honggiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, and David Gelernter. Traffic engineering with forward
fault correction. In ACM SIGCOMM 2014 Conference, SIG-
COMM’14, Chicago, IL, USA, August 17-22, 2014, pages 527—

538, 2014.

[6] Cynthia Barnhart, Niranjan Krishnan, and Pamela H. Vance.
Multicommodity flow problems. In Encyclopedia of Optimiza-

tion, pages 2354-2362. Springer, 2009.

[7] Dritan Nace and Michal Pi6ro. Max-min fairness and its
applications to routing and load-balancing in communication
networks: A tutorial. [EEE Communications Surveys and Tuto-

rials, 10(1-4):5-17, 2008.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Danna, S. Mandal, and A. Singh. A practical algorithm
for balancing the max-min fairness and throughput objectives
in traffic engineering. In 2012 Proceedings IEEE INFOCOM,
pages 846-854, March 2012.

Youngseok Lee, Yongho Seok, Yanghee Choi, and Changhoon
Kim. A constrained multipath traffic engineering scheme for
MPLS networks. In ICC, pages 2431-2436. IEEE, 2002.

Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinadhuni,
Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Bjrn Car-
lin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,
Stephen Stuart, and Amin Vahdat. Bwe: Flexible, hierarchical
bandwidth allocation for wan distributed computing.
comm 15, 2015.

In Sig-

Thomas A. Williams and Gregory P. White. A note on yen’s
algorithm for finding the length of all shortest paths in n-node
nonnegative-distance networks. J. ACM, 20(3):389-390, July
1973.

Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert
Kleinberg, and Robert Soulé. Yates: Rapid prototyping for
traffic engineering systems. In Proceedings of the Symposium
on SDN Research, SOSR *18, pages 11:1-11:7, New York, NY,

USA, 2018. ACM.

M. Chiesa, G. Kindler, and M. Schapira.
neering with equal-cost-multipath: An algorithmic perspective.
IEEE/ACM Transactions on Networking, 25(2):779-792, April
2017.

Traffic engi-

Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark
Filer, and Phillipa Gill.
network. August 2018.

Radwan: Rate adaptive wide area

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi
Li, Wei Xu, and Jennifer Rexford. Optimizing bulk transfers
with software-defined optical wan. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 87-100,
New York, NY, USA, 2016. ACM.

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi
Li, Wei Xu, and Jennifer Rexford. Optimizing bulk transfers
with software-defined optical wan. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 87-100,
New York, NY, USA, 2016. ACM.

Ajay Mahimkar, Angela Chiu, Robert Doverspike, Mark D.
Feuer, Peter Magill, Emmanuil Mavrogiorgis, Jorge Pastor, Sh-
eryl L. Woodward, and Jennifer Yates. Bandwidth on demand
for inter-data center communication. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, HotNets-X, pages
24:1-24:6, New York, NY, USA, 2011. ACM.

